Diamondiferous rocks from the Kokchetav Massif, Kazakhstan, represent deeply subducted continental crust. In order to constrain the age of ultra high pressure (UHP) metamorphism and subsequent retrogression during exhumation, zircons from diamondiferous gneisses and metacarbonates have been investigated by a combined petrological and isotopic study. Four dierent zircon domains were distinguished on the basis of transmitted light microscopy, cathodoluminescence, trace element contents and mineral inclusions. Mineral inclusions and trace element characteristics of the zircon domains permit us to relate zircon growth to metamorphic conditions. Domain 1 consists of rounded cores and lacks evidence of UHP metamorphism. Domain 2 contains diamond, coesite, omphacite and titanian phengite inclusions providing evidence that it formed at UHP metamorphic conditions (P>43 kbar; T 950 °C). Domain 3 is characterised by low-pressure mineral inclusions such as garnet, biotite and plagioclase, which are common minerals in the granulite-facies overprint of the gneisses (P 10 kbar; T 800 °C). This multi-stage zircon growth during cooling and exhumation of the diamondiferous rocks can be best explained by zircon growth from Zr-saturated partial melts present in the gneisses. Domain 4 forms idiomorphic overgrowths and the rare earth element pattern indicates that it formed without coexisting garnet, most probably at amphibolite-facies conditions (P 5 kbar; T 600 °C). The metamorphic zircon domains were dated by SHRIMP ion microprobe and yielded ages of 5275, 5288 and 5265 Ma for domains 2, 3 and 4 respectively. These indistinguishable ages provide evidence for a fast exhumation beyond the resolution of SHRIMP dating. The mean age of all zircons formed between UHP metamorphic conditions and granulite-facies metamorphism is 5283 Ma, indicating that decompression took place in less than 6 Ma. Hence, the deeply subducted continental crust was exhumed from mantle depth to the base of the crust at rates higher than 1.8 cm/year. We propose a two-stage exhumation model to explain the obtained P±T±t path. Fast exhumation on top of the subducted slab from depth >140 to 35 km was driven by buoyancy and facilitated by the presence of partial melts. A period of near isobaric cooling was followed by a second decompression event probably related to extension in a late stage of continental collision.
A B S TR A CT Representative diamond-bearing gneisses and dolomitic marble, eclogite and Ti-clinohumite-bearing garnet peridotite from Unit I at Kumdy Kol and whiteschist from Unit II at Kulet, eastern Kokchetav Massif, northern Kazakhstan, were studied. Diamond-bearing gneisses contain variable assemblages, including Grt+Bt+Qtz±Pl±Kfs±Zo±Chl±Tur±Cal and minor Ap, Rt and Zrn; abundant inclusions of diamond, graphite+chlorite (or calcite), phengite, clinopyroxene, K-feldspar, biotite, rutile, titanite, calcite and zircon occur in garnet. Diamond-bearing dolomitic marbles consist of Dol+Di±Grt+Phl; inclusions of diamond, dolomite±graphite, biotite, and clinopyroxene were identified in garnet. Whiteschists carry the assemblage Ky+Tlc+Grt+Rt; garnet shows compositional zoning, and contains abundant inclusions of talc, kyanite and rutile with minor phlogopite, chlorite, margarite and zoisite. Inclusions and zoning patterns of garnet delineate the prograde P-T path. Inclusions of quartz pseudomorphs after coesite were identified in garnet from both eclogite and gneiss. Other ultrahigh-pressure (UHP) indicators include Na-bearing garnet (up to 0.14 wt% Na 2 O) with omphacitic Cpx in eclogite, occurrence of high-K diopside (up to 1.56 wt% K 2 O) and phlogopite in diamond-bearing dolomitic marble, and Cr-bearing kyanite in whiteschist. These UHP rocks exhibit at least three stages of metamorphic recrystallization. The Fe-Mg partitioning between clinopyroxene and garnet yields a peak temperature of 800-1000°C at P>40 kbar for diamond-bearing rocks, and about 740-780°C at >28-35 kbar for eclogite, whiteschist and Ti-bearing garnet peridotite. The formation of symplectitic plagioclase+amphibole after clinopyroxene, and replacement of garnet by biotite, amphibole, or plagioclase mark retrograde amphibolite facies recrystallization at 650-680°C and pressure less than about 10 kbar. The exsolution of calcite from dolomite, and development of matrix chlorite and actinolite imply an even lower grade greenschist facies overprint at c. 420°C and 2-3 kbar. A clockwise P-T path suggests that supracrustal sediments together with basaltic and ultramafic lenses apparently were subjected to UHP subduction-zone metamorphism within the diamond stability field. Tectonic mixing may have occurred prior to UHP metamorphism at mantle depths. During subsequent exhumation and juxtaposition of many other tectonic units, intense deformation chaotically mixed and mylonitized these lithotectonic assemblages.
The Kokchetav Complex is a tectonic mega‐melange consisting of seven pre‐Ordovician units (units I‐VII) of contrasting lithologies and P–T conditions of metamorphism, overlain and/or intruded by four post‐recrystallization entities. Most of the constituent rock types display affinities with continental crust; paraschists and paragneisses, which carry biogenically produced carbon, clearly were laid down near the surface of the Earth. Microdiamond (and rare coesite) inclusions are contained in strong, refractory garnet, zircon, clinopyroxene, and kyanite, some of the constituent neoblastic phases of this metasedimentary unit. Systematic mineral parageneses and textural relationships support the hypothesis that the metamorphic assemblages represent a close approach to chemical equilibrium at the time of formation. Metamorphism of diamond‐bearing paragneisses and schists transpired at 535 ± 5 Ma; physical conditions included minimum pressures of 40 kbar and temperatures exceeding 900 °C. Other associated units contain mineralogic evidence of somewhat lower to considerably lower pressures and temperatures: observed magnesite + diopside pairs, coesite, grossular‐pyropic garnet, potassic clinopyroxene, Si‐rich phengite, barroisite‐crossite(?), aluminous titanite and/or Al‐rutile, and the assemblage talc + kyanite + garnet all testify to relatively elevated pressures of formation. The metamorphosed lithotectonic units represent individual, discrete stages in what initially may have been a continuous P‐T series, but intense post‐metamorphic dislocation has resulted in the preservation of a chaotically mixed sequence rather than an unbroken gradation in preserved conditions of metamorphism. Only units I‐III, and probably VIb may represent portions of a dismembered subduction zone lithologie assemblage. The uplift to mid‐crustal levels and cooling of the mega‐melange took place by about 515–517 Ma, at which time the complex was stabilized as a part of the Kazakhstan microcontinental collage. An hypothesized Late Vendian‐Early Cambrian subduction of the Kazakhstan‐North Tianshan(?) microcontinental salient to depths exceeding 125 km, followed by decoupling from the descending oceanic crust‐capped lithospheric plate is held responsible for the ultrahigh‐pressure metamorphism of the Kokchetav Complex. Inasmuch as vestiges of a calc‐alkaline volcanic/plutonic arc of approximately Early Cambrian age are preserved as only scattered relics in the general region, the plate‐tectonic setting may have involved an intra‐oceanic, Marianas‐type, incipient arc which was subsequently removed through transform faulting or erosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.