The microstructure and magnetic properties of Fe-Co-Cr alloys with 15 wt % Co were investigated using transmission electron microscopy and magnetic measurements. The secondary decomposition within both the α2-phase matrix and the α1-phase particles was observed for magnets subjected thermo-magnetic treatment and subsequent stepped aging or continuous-cooling treatments. During high-temperature treatments (630-600оC), when the α2phase is dominant (the volume fraction is more than 50%), the secondary decomposition of this phase takes place (α2→ α1'+ α2'). The deterioration of magnetic insulation of α1-phase particles results in the decrease in the coercive force of alloys. Below 600оC, when the α1phase is dominant (the volume fraction is more than 50%), the splitting of elongated α1-phase particles occurs. When the temperature of stepped-aging decreases in high steps, the secondary decomposition (α1→ α1'+ α2') leads to the splitting of initial α1-phase particles into fine slightly elongated particles and the decrease in the coercive force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.