Background and PurposeMitochondria-derived oxidative stress is believed to be crucially involved in cardiac ischaemia reperfusion (I/R) injury, although currently no therapies exist that specifically target mitochondrial reactive oxygen species (ROS) production. The present study was designed to evaluate the potential effects of the structural analogues of apelin-12, an adipocyte-derived peptide, on mitochondrial ROS generation, cardiomyocyte apoptosis, and metabolic and functional recovery to myocardial I/R injury.Experimental ApproachIn cultured H9C2 cardiomyoblasts and adult cardiomyocytes, oxidative stress was induced by hypoxia reoxygenation. Isolated rat hearts were subjected to 35 min of global ischaemia and 30 min of reperfusion. Apelin-12, apelin-13 and structural apelin-12 analogues, AI and AII, were infused during 5 min prior to ischaemia.Key ResultsIn cardiac cells, mitochondrial ROS production was inhibited by the structural analogues of apelin, AI and AII, in comparison with the natural peptides, apelin-12 and apelin-13. Treatment of cardiomyocytes with AI and AII decreased cell apoptosis concentration-dependently. In a rat model of I/R injury, pre-ischaemic infusion of AI and AII markedly reduced ROS formation in the myocardial effluent and attenuated cell membrane damage. Prevention of oxidative damage by AI and AII was associated with the improvement of functional and metabolic recovery after I/R in the heart.Conclusions and ImplicationsThese data provide the evidence for the potential of the structural apelin analogues in selective reduction of mitochondrial ROS generation and myocardial apoptosis and form the basis for a promising therapeutic strategy in the treatment of oxidative stress-related heart disease.
Background and purpose: Galanin is a multifunctional neuropeptide with pleiotropic roles. The present study was designed to evaluate the potential effects of galanin (2-11) (G1) on functional and metabolic abnormalities in response to myocardial ischemia-reperfusion (I/R) injury. Experimental approach: Peptide G1 was synthesized by the 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase method. The chemical structure was identified by
Background and purposeGalanin is an endogenous peptide involved in diverse physiological functions in the central nervous system including central cardiovascular regulation. The present study was designed to evaluate the potential effects of the short N-terminal galanin fragment 2-15 (G) on cardiac ischemia/reperfusion (I/R) injury.Experimental ApproachPeptide G was synthesized by the automatic solid phase method and identified by 1H-NMR spectroscopy and mass spectrometry. Experiments were performed on cultured rat cardiomyoblast (H9C2) cells, isolated perfused working rat hearts and anaesthetized open-chest rats.Key ResultsCell viability increased significantly after treatment with 10 and 50 nM of G peptide. In hypoxia and reoxygenation conditions, exposure of H9C2 cells to G peptide decreased cell apoptosis and mitochondrial reactive oxygen species (ROS) production. Postischemic infusion of G peptide reduced cell membrane damage and improved functional recovery in isolated hearts during reperfusion. These effects were accompanied by enhanced restoration of myocardial metabolic state. Treatment with G peptide at the onset of reperfusion induced minor changes in hemodynamic variables but significantly reduced infarct size and plasma levels of necrosis markers.Conclusion and implicationsThese findings suggest that G peptide is effective in mitigating cardiac I/R injury, thereby providing a rationale for promising tool for the treatment of cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.