The past decade has witnessed a rapid proliferation of video cameras in all walks of life and has resulted in a tremendous explosion of video content. Several applications such as content-based video annotation and retrieval, highlight extraction and video summarization require recognition of the activities occurring in the video. The analysis of human activities in videos is an area with increasingly important consequences from security and surveillance to entertainment and personal archiving. Several challenges at various levels of processing-robustness against errors in low-level processing, view and rate-invariant representations at midlevel processing and semantic representation of human activities at higher level processing-make this problem hard to solve. In this review paper, we present a comprehensive survey of efforts in the past couple of decades to address the problems of representation, recognition, and learning of human activities from video and related applications. We discuss the problem at two major levels of complexity: 1) "actions" and 2) "activities." "Actions" are characterized by simple motion patterns typically executed by a single human. "Activities" are more complex and involve coordinated actions among a small number of humans. We will discuss several approaches and classify them according to their ability to handle varying degrees of complexity as interpreted above. We begin with a discussion of approaches to model the simplest of action classes known as atomic or primitive actions that do not require sophisticated dynamical modeling. Then, methods to model actions with more complex dynamics are discussed. The discussion then leads naturally to methods for higher level representation of complex activities.
Although several access control policies can be devised for controlling access to information, all existing authorization models, and the corresponding enforcement mechanisms, are based on a specific policy (usually the closed policy). As a consequence, although different policy choices are possible in theory, in practice only a specific policy can actually be applied within a given system. In this paper, we present a unified framework that can enforce multiple access control policies withinThe work of S.
We present incremental evaluation algorithms to compute changes to materialized views in relational and deductive database systems, in response to changes (insertions, deletions, and updates) to the relations. The view definitions can be in SQL or Datalog, and may use UNION, negation, aggregation ( e.g. SUM, MIN), linear recursion, and general recursion. We first present a counting algorithm that tracks the number of alternative derivations (counts) for each derived tuple in a view. The algorithm works with both set and duplicate semantics. We present the algorithm for nonrecursive views (with negation and aggregation), and show that the count for a tuple can be computed at little or no cost above the cost of deriving the tuple. The algorithm is optimal in that it computes exactly those view tuples that are inserted or deleted. Note that we store only the number of derivations, not the derivations themselves. We then present the Delete and Rederive algorithm, DRed, for incremental maintenance of recursive views (negation and aggregation are permitted). The algorithm works by first deleting a superset of the tuples that need to be deleted, and then rederiving some of them. The algorithm can also be used when the view definition is itself altered.
Weighted signed networks (WSNs) are networks in which edges are labeled with positive and negative weights. WSNs can capture like/dislike, trust/distrust, and other social relationships between people. In this paper, we consider the problem of predicting the weights of edges in such networks. We propose two novel measures of node behavior: the goodness of a node intuitively captures how much this node is liked/trusted by other nodes, while the fairness of a node captures how fair the node is in rating other nodes\u27 likeability or trust level. We provide axioms that these two notions need to satisfy and show that past work does not meet these requirements for WSNs. We provide a mutually recursive definition of these two concepts and prove that they converge to a unique solution in linear time. We use the two measures to predict the edge weight in WSNs. Furthermore, we show that when compared against several individual algorithms from both the signed and unsigned social network literature, our fairness and goodness metrics almost always have the best predictive power. We then use these as features in different multiple regression models and show that we can predict edge weights on 2 Bitcoin WSNs, an Epinions WSN, 2 WSNs derived from Wikipedia, and a WSN derived from Twitter with more accurate results than past work. Moreover, fairness and goodness metrics form the most significant feature for prediction in most (but not all) cases
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.