We present a mathematical model describing the spatial distribution of tear film osmolarity across the ocular surface of a human eye during one blink cycle, incorporating detailed fluid and solute dynamics. Based on the lubrication approximation, our model comprises three coupled equations tracking the depth of the aqueous layer of the tear film, the concentration of the polar lipid, and the concentration of physiological salts contained in the aqueous layer. Diffusive boundary layers in the salt concentration occur at the thinnest regions of the tear film, the black lines. Thus, despite large Peclet numbers, diffusion ameliorates osmolarity around the black lines, but nonetheless is insufficient to eliminate the build-up of solute in these regions. More generally, a heterogeneous distribution of solute concentration is predicted across the ocular surface, indicating that measurements of lower meniscus osmolarity are not globally representative, especially in the presence of dry eye. Vertical saccadic eyelid motion can reduce osmolarity at the lower black line, raising the prospect that select eyeball motions more generally can assist in alleviating tear film hyperosmolarity. Finally, our results indicate that measured evaporative rates will induce excessive hyperosmolarity at the black lines, even for the healthy eye. This suggests that further evaporative retardation at the black lines, for instance due to the cellular glycocalyx at the ocular surface or increasing concentrations of mucus, will be important for controlling hyperosmolarity as the black line thins.
This paper examines two related problems from liquid-film theory. Firstly, a steady-state flow of a liquid film down a pre-wetted plate is considered, in which there is a precursor film in front of the main film. Assuming the former to be thin, a full asymptotic description of the problem is developed and simple analytical estimates for the extent and depth of the precursor film's influence on the main film are provided. Secondly, the so-called drag-out problem is considered, where an inclined plate is withdrawn from a pool of liquid. Using a combination of numerical and asymptotic means, the parameter range where the classical Landau–Levich–Wilson solution is not unique is determined.
We consider an infinite plate being withdrawn (at an angle α to the horizontal, with a constant velocity U ) from an infinite pool of viscous liquid. Assuming that the effects of inertia and surface tension are weak, Derjaguin (C. R. Dokl. Acad. Sci. URSS, vol. 39, 1943, p. 13.) conjectured that the 'load' l, i.e. the thickness of the liquid film clinging to the plate, is l = (μU/ρg sin α) 1/2 , where ρ and μ are the liquid's density and viscosity, and g is the acceleration due to gravity.In the present work, the above formula is derived from the Stokes equations in the limit of small slopes of the plate (without this assumption, the formula is invalid). It is shown that the problem has infinitely many steady solutions, all of which are stablebut only one of these corresponds to Derjaguin's formula. This particular steady solution can only be singled out by matching it to a self-similar solution describing the non-steady part of the film between the pool and the film's 'tip'.Even though the near-pool region where the steady state has been established expands with time, the upper, non-steady part of the film (with its thickness decreasing towards the tip) expands faster and, thus, occupies a larger portion of the plate. As a result, the mean thickness of the film is 1.5 times smaller than the load.
Extensive studies have explored the dynamics of the ocular surface fluid, though theoretical investigations are typically limited to the use of the lubrication approximation, which is not guaranteed to be uniformly valid a-priori throughout the tear meniscus. However, resolving tear film behaviour within the meniscus and especially its apices is required to characterise the flow dynamics where the tear film is especially thin, and thus most susceptible to evaporatively induced hyperosmolarity and subsequent epithelial damage. Hence, we have explored the accuracy of the standard lubrication approximation for the tear film by explicit comparisons with the 2D Navier-Stokes model, considering both stationary and moving eyelids. Our results demonstrate that the lubrication model is qualitatively accurate except in the vicinity of the eyelids. In particular, and in contrast to lubrication theory, the solution of the full Navier-Stokes equations predict a distinct absence of fluid flow, and thus convective mixing in the region adjacent to the tear film contact line. These observations not only support emergent hypotheses concerning the formation of Marx's line, a region of epithelial cell staining adjacent to the contact line on the eyelid, but also enhance our understanding of the pathophysiological consequences of the flow profile near the tear film contact line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.