Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) and calcium phosphate ceramic materials and coatings are widely used in medicine and dentistry because of their ability to enhance the tissue response to implant surfaces and promote bone ingrowth and osseoconduction processes. The deposition conditions have a great influence on the structure and biofunctionality of calcium phosphate coatings. Corrosion processes and poor adhesion to substrate material reduce the lifetime of implants with calcium phosphate coatings. The research has focused on the development of advanced methods to deposit double-layered ceramic oxide/calcium phosphate coatings by a hybrid technique of magnetron sputtering and thermal methods. The thermal method can promote the crystallization and the formation of HAp coatings on titanium alloy Ti6Al4V substrates at low temperature, based on the principle that the solubility of HAp in aqueous solutions decreases with increasing substrate temperature. By this method, hydroxyapatite directly coated the substrate without precipitation in the initial solution. Using a thermal substrate method, calcium phosphate coatings were prepared at substrate temperatures of 100-105 oC. The coated metallic implant surfaces with ceramic bond coats and calcium phosphate layers combine the excellent mechanical properties of metals with the chemical stability of ceramic materials. The corrosion test results show that the ceramic oxide (alumina) coatings and the double-layered alumina-calcium phosphate coatings improve the corrosion resistance compared with uncoated Ti6Al4V and single-layered Ti6Al4V/calcium phosphate substrates. In addition, the double-layered alumina/hydroxyapatite coatings demonstrate the best biocompatibility during in vitro tests.
The present paper addresses the problem of identification of microstructural, nanomechanical, and tribological properties of thin films of tantalum (Ta) and its compounds deposited on stainless steel substrates by direct current magnetron sputtering. The compositions of the obtained nanostructured films were determined by energy dispersive spectroscopy. Surface morphology was investigated using atomic force microscopy (AFM). The coatings were found to be homogeneous and have low roughness values (<10 nm). The values of microhardness and elastic modulus were obtained by means of nanoindentation. Elastic modulus values for all the coatings remained unchanged with different atomic percentage of tantalum in the films. The values of microhardness of the tantalum films were increased after incorporation of the oxygen and nitrogen atoms into the crystal lattice of the coatings. The coefficient of friction, CoF, was determined by the AFM method in the “sliding” and “plowing” modes. Deposition of the coatings on the substrates led to a decrease of CoF for the coating-substrate system compared to the substrates; thus, the final product utilizing such a coating will presumably have a longer service life. The tantalum nitride films were characterized by the smallest values of CoF and specific volumetric wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.