The authors present the results of optical limiting measurements of ∼10nm wide bismuth nanorods suspended in chloroform. Their Z-scan measurements reveal that optical limiting under 532nm excitation stems from a strong nonlinear scattering (NLS) subsequent to nonlinear absorption (NLA) by suspension. On the other hand, the optical limiting is entirely due to NLA when excited with 1064nm excitation in the nanosecond regime. The occurrence of NLS at one wavelength and absence at another is unusual, especially when compared to the behavior of carbon nanotubes under similar conditions, in which NLS is dominant at both wavelengths.
BCZT (Ba0.85Ca0.15Zr0.1Ti0.9O3) is a recent class of lead-free ferroelectric material associated with high piezoelectric coefficient, making it suitable to inspire hydroxyapatite (HA)-BCZT ceramics for bone materials. Nano-crystalline hydroxyapatite (HA) synthesized using the hydrothermal route was characterized via FT-IR, Raman spectroscopy, X-ray powder diffraction (XRD), and Scanning Electron Microscopy (SEM). We also rationalized its formation as a function of operating conditions such as dwell time and temperature in this route. The nano-crystalline BCZT powder was synthesized via a sol-gel technique and its structural and morphological characterization were carried out using Raman Spectroscopy, XRD and Transmission Electron Microscopy (TEM). These investigations facilitated the optimization of HA-BCZT compositions and their electrical poling conditions to achieve enhanced piezoelectric effect. The composites (HA-BCZT) sintered at 1350∘C exhibited promising piezoelectric properties. We report the enhanced piezoelectric coefficient (d33) of 7±1 pC/N for 50% HA-BCZT which is significant as compared to that reported in the literature for ~98% BT (barium titanate) -HA composites. We highlight the role of Simulated Body Fluid (SBF) on the intriguing phase-change of Tricalcium Phosphate (TCP) obtained at this sintering temperature, to hydroxyapatite for its essential contribution to promote bone growth. We theoretically support the confirmed in vitro biocompatibility of these composites.
Graphical abstract: Novel lead-free biocompatible piezoelectric HA-BCZT nanocrystal composites for accelerated Bone regeneration
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.