Due to the widespread use of electronic power converters, low-voltage high-frequency cable models are being increasingly applied in industry, automobile or aeronautics applications among others. It is known that depending on switching frequency, cable configuration and length, transient overvoltage effects comprising a wide frequency range from dc up to several tens of MHz can appear. However, to accurately reproduce the wide-band frequency response, such models often require the use of ladder networks, thus being necessary to adjust the values of a relatively large number of R, L and C components, which is a complex task. This paper is focused to solve this problem, which is done by applying an iterative genetic algorithm (IGA) optimization approach. From a set of experimental short circuit and open circuit tests the high-frequency cable model of a given cable configuration is obtained, whose parameters are fitted by means of the proposed IGA-based method. Finally, the accuracy of the model obtained is validated experimentally by comparing the frequency-domain and time-domain responses through overvoltage predictions of different samples of the analyzed cable.Postprint (author's final draft
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.