The main aim of this research is to determine the erratic user behaviour over social media using machine learning classifiers by comparing Novel K-Nearest Neighbour algorithm and Support Vector Machine algorithm. Classification is performed using K-Nearest Neighbour with sample size (N=10) and Support Vector Machine sample size (N=10), and results were compared based on the accuracy of both algorithms. The KNN is used to determine the accuracy of erratic user behaviour with the help of social media network reviews with twitter data. The accuracy achieved for KNN is (95.30%) and SVM is (92.67%). The statistical significance between K-Nearest Neighbour & Support Vector Machine is (p=0.0094) where (p<0.05).K-Nearest Neighbour algorithm helps in determining with more accuracy in erratic user behaviour over social media networks, and here KNN algorithm shows better accuracy than SVM algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.