Ondansetron hydrochloride, a 5 HT3 antagonist is a powerful antiemetic drug which has oral bioavailability of 60% due to hepatic first pass metabolism and has a short half-life of 5 h. To overcome the above draw back, the present study was carried out to formulate and evaluate fast dissolving films of ondansetron hydrochloride for sublingual administration. The films were prepared from polymers such as polyvinylalcohol, polyvinyl pyrrolidone, Carbopol 934P in different ratios by solvent casting method. Propylene glycol or PEG 400 as plasticizers and mannitol or sodium saccharin as sweeteners were also included. The IR spectral studies showed no interaction between drug and polymer or with other additives. Satisfactory results were obtained when subjected to physico-chemical tests such as uniformity of weight, thickness, surface pH, folding endurance, uniformity of drug content, swelling index, bioadhesive strength, and tensile strength. Films were also subjected to in vitro drug release studies by using USP dissolution apparatus. Ex vivo drug permeation studies were carried out using porcine membrane model. In vitro release studies indicated 81–96% release within 7 min and 66–80% within 7 min during ex vivo studies. Drug permeation of 66–77% was observed through porcine mucosa within 40 min. Higher percentage of drug release was observed from films containing the sweeteners. The stability studies conducted for a period of 8 weeks showed no appreciable change in drug content, surface pH, and in vitro drug release.
A multiple unit oral floating drug delivery system of famotidine was developed to prolong gastric residence time, target stomach mucosa and increase drug bioavailability. Drug and polymer compatibility was studied by subjecting physical mixtures of drug and polymers to differential scanning calorimetry. Cod liver oil entrapped calcium alginate beads containing famotidine, capable of floating in the gastric condition were formulated and evaluated. The gel beads were prepared by emulsion gelation method by employing sodium alginate alone and mixture of sodium alginate and hydrophilic copolymers such as carbopol 934P and hydroxypropylmethylcellulose K15M grade in three different ratios. The effect of selected factors, such as percentage of oil and amount of copolymers on floating properties was investigated. The beads were evaluated for percent drug loading, drug entrapment efficiency, buoyancy and in vitro drug release. The in vitro drug release study of the beads was carried out in simulated gastric media employing a modified Rosette-Rice test apparatus. Wherein, the apparatus was further modified by incorporating a water jacket to the apparatus to circulate hot water to maintain 37±2° for throughout the release study. All the oil entrapped calcium alginate beads floated if a sufficient amount of oil was used. Beads formulated employing sodium alginate alone could not sustain the drug release up to 8 h, whereas beads formulated with mixture of sodium alginate and copolymers demonstrated sustained release of famotidine up to 8 h. The results suggested that cod liver oil entrapped calcium alginate beads were promising as a carrier for intragastric floating drug delivery of famotidine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.