The atmospheric anomalies for the 1997/98 El Niño-Southern Oscillation (ENSO) period have been analyzed and intercompared using the data simulated by the atmospheric general circulation models (GCMs) of 11 groups participating in the Monsoon GCM Intercomparison Project initiated by the Climate Variability and Prediction Program (CLIVAR)/Asian-Australian Monsoon Panel. Each participating GCM group performed a set of 10 ensemble simulations for 1 September 1996-31 August 1998 using the same sea surface temperature (SST) conditions but with different initial conditions. The present study presents an overview of the intercomparison project and the results of an intercomparison of the global atmospheric anomalies during the 1997/98 El Niño period. Particularly, the focus is on the tropical precipitation anomalies over the monsoon-ENSO region and the upper-tropospheric circulation anomalies in the Pacific-North American (PNA) region. The simulated precipitation anomalies show that all of the models simulate the spatial pattern of the observed anomalies reasonably well in the tropical central Pacific, although there are large differences in the amplitudes. However, most of the models have difficulty in simulating the negative anomalies over the Maritime Continent during El Niño. The 200-hPa geopotential anomalies over the PNA region are reasonably well reproduced by most of the models. But, the models generally underestimate the amplitude of the PNA pattern. These weak amplitudes are related to the weak precipitation anomalies in the tropical Pacific. The tropical precipitation anomalies are found to be closely related to the SST anomalies not only during the El Niño seasons but also during the normal seasons that are typified by weak SST anomalies in the tropical Pacific. In particular, the pattern correlation values of the 11-model composite of the precipitation anomalies with the observed counterparts for the normal seasons are near 0.5 for the tropical region between 30ЊS and 30ЊN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.