The service life of thick-walled power plant components exposed to creep, as is the case with pipelines of fresh- and re-heated steam, depend on the exhaustion rate of the material. Plant operation at elevated temperatures and at temperatures below designed temperatures all relates to the material exhaustion rate, thus complicating remaining life assessment, whereas the operating temperature variation is a most common cause in the mismatching of real service- and design life. Apart from temperature, the tube wall stress is a significant variable for remaining life assessment, whose calculation depends on the selected procedure, due to the complex pipeline configuration. In this paper, a remaining life assessment is performed according to the Larson-Miller parametric relation for a Ø324×36 pipe bend element of a fresh steam-pipeline, made of steel class 1Cr0.3Mo0.25V, after 160 000 hours of operation. The temperature history of the pipeline, altogether with the pipe bend, is determined based on continuous temperature monitoring records. Compared results of remaining life assessment are displayed for monitored temperature records and for designed operating temperature in the same time period. The stress calculation in the pipe bend wall is performed by three methods that are usually applied so to emphasize the differences in the obtained results of remaining life assessment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.