A theoretical approach for the specification of shunt MEMS switches suitable for Tunable Matching Networks (TMN) at 1.9 GHz is presented. DC-contact fixed-fixed beam MEMS switches designed with series metal-insulator-metal (MIM) capacitors at the grounding plane of a CPW transmission line provide the basic design block for the TMN. In the down-state, the MEMS switch makes an ohmic contact with the transmission line, as consequence, the down-state capacitance of the switch is dominated by the MIM capacitors. The proper dimensioning of the MIM capacitors enables to directly increase the capacitance ratio of the switch in order to operate at frequencies below 10 GHz. Based on predefined CPW transmission line configurations on composite substrates, the optimization of the capacitance ratio of the MEMS switch can be directly related to the geometry of the CPW transmission line.
422
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.