Interest in magnetic nanoparticles has increased in the past few years by virtue of their potential for applications in fields such as ultrahigh-density recording and medicine. Most applications rely on the magnetic order of the nanoparticles being stable with time. However, with decreasing particle size the magnetic anisotropy energy per particle responsible for holding the magnetic moment along certain directions becomes comparable to the thermal energy. When this happens, the thermal fluctuations induce random flipping of the magnetic moment with time, and the nanoparticles lose their stable magnetic order and become superparamagnetic. Thus, the demand for further miniaturization comes into conflict with the superparamagnetism caused by the reduction of the anisotropy energy per particle: this constitutes the so-called 'superparamagnetic limit' in recording media. Here we show that magnetic exchange coupling induced at the interface between ferromagnetic and antiferromagnetic systems can provide an extra source of anisotropy, leading to magnetization stability. We demonstrate this principle for ferromagnetic cobalt nanoparticles of about 4 nm in diameter that are embedded in either a paramagnetic or an antiferromagnetic matrix. Whereas the cobalt cores lose their magnetic moment at 10 K in the first system, they remain ferromagnetic up to about 290 K in the second. This behaviour is ascribed to the specific way ferromagnetic nanoparticles couple to an antiferromagnetic matrix.
The crystal and magnetic structures of orthorhombic ε-Fe2O3 have been studied by simultaneous Rietveld refinement of X-ray and neutron powder-diffraction data in combination with Mössbauer spectroscopy, as well as magnetization and heat-capacity measurements. It has been found that above 150 K, the ε-Fe2O3 polymorph is a collinear ferrimagnet with magnetic moments directed along the a axis, whereas the magnetic ordering below 80 K is characterized by a square-wave incommensurate structure. The transformation between these two states is a second-order phase transition and involves subtle structural changes mostly affecting the coordination of the tetrahedral and one of the octahedral Fe sites. The temperature dependence of the ε-Fe2O3 magnetic properties is discussed in light of these results.
The magnetic exchange between epitaxial thin films of the multiferroic (antiferromagnetic and ferroelectric) hexagonal YMnO 3 oxide and a soft ferromagnetic (FM) layer is used to couple the magnetic response of the FM layer to the magnetic state of the antiferromagnetic one. We will show that biasing the ferroelectric YMnO 3 layer by an electric field allows control of the magnetic exchange bias and subsequently the magnetotransport properties of the FM layer. This finding may contribute to paving the way towards a new generation of electric-field controlled spintronic devices. DOI: 10.1103/PhysRevLett.97.227201 PACS numbers: 75.70.Cn, 85.80.Jm Multiferroic materials have been proposed for building a new generation of devices in spintronics, eventually allowing us to overcoming critical limitations in technology [1]. Much effort has been directed to searching for materials displaying the elusive coexistence of ferroelectricity (FE) and ferromagnetism (FM) [2,3], which is thought to be essential for progress in this direction. In contrast, materials displaying coupled FE and antiferromagnetic (AF) behavior have received much less attention. To exploit the multiferroic character of a material, it is essential that the ferroic properties (magnetic and electric, in the present context) are coupled. Hexagonal YMnO 3 (YMO), in bulk form, is ferroelectric up to 900 K and exhibits an antiferromagnetic character at low temperature (T N 90 K). It has been shown that in YMO single crystals, both order parameters are coupled [4], and this observation has triggered a renewed attention to this oxide [5,6]. The electric polarization axis of YMO is along the c axis; the Mn atomic spins lie in a perpendicular plane, forming a two dimensional, frustrated antiferromagnetic, triangular network [7,8]. Hence, in principle, one could use AF YMO to pin the magnetic state of a FM material and subsequently exploit its ferroelectric character and the coupling between FE and AF order parameters to tailor the properties of the FM layer. As a first step, it has been recently shown that indeed it is possible to exchange-bias NiFe (Permalloy-Py) with AF epitaxial (0001) YMO films which display a remanent electric polarization [5].Attempts towards electric-field control of exchange bias have been recently reported by Borisov et al. using magnetoelectric, but not multiferroic (AF) Cr 2 O 3 single crystals as pinning layers [9]. Here, we will show that it is possible to grow heterostructures that, exploiting the AF and FE character of YMO, allow us to control the magnetic state of a FM layer by an electric field. For that purpose, an epitaxial layer of YMO has been sandwiched between metallic electrodes (Pt and Py), and the exchange bias between YMO and Py has been monitored as a function of a biasing electric field applied across the YMO layer [ Fig. 1(b)].When a magnetic field is applied parallel to the interface between FM and AF materials, the magnetization of the FM layer does not follow (neglecting the anisotropy of the FM layer) the ex...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.