This review article deals with the regularization of the boundary element formulations for solution of boundary value problems of continuum mechanics. These formulations may be singular owing to the use of two-point singular fundamental solutions. When the physical interpretation is irrelevant for this topic of computational mechanics, we consider various mechanical problems simultaneously within particular sections selected according to the main topic. In spite of such a structure of the paper, applications of the regularization techniques to many mechanical problems are described. There are distinguished two main groups of regularization techniques according to their application to singular formulations either before or after the discretization. Further subclassification of each group is made with respect to basic principles employed in individual regularization techniques. This paper summarizes the substances of the regularization procedures which are illustrated on the boundary element formulation for a scalar potential field. We discuss the regularizations of both the strongly singular and hypersingular integrals, occurring in the boundary integral equations, as well as those of nearly singular and nearly hypersingular integrals arising when the source point is near the integration element (as compared to its size) but not on this element. The possible dimensional inconsistency (or scale dependence of results) of the regularization after discretization is pointed out. Finally, we discuss the numerical approximations in various boundary element formulations, as well as the implementations of solutions of some problems for which derivative boundary integral equations are required.
This paper presents the local boundary integral formulation for an elastic body with nonhomogeneous material properties. All nodal points are surrounded by a simple surface centered at the collocation point. Only one nodal point is included in each the sub-domain. On the surface of the sub-domain, both displacements and traction vectors are unknown generally. If a modi®ed fundamental solution, for governing equation, which vanishes on the local boundary is chosen, the traction value is eliminated from the local boundary integral equations for all interior points. For every sub-domain, the material constants correspond to those at the collocation point at the center of sub-domain. Meshless and polynomial element approximations of displacements on the local boundaries are considered in the numerical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.