The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major Neutral Beam Injection (NBI) upgrade providing record power in 2019-2020, and tested the technical & procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed Shattered Pellet Injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design & operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.
Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity.
The existing Globus-M machine [1] is a low aspect ratio compact tokamak (R = 0.36 m, a = 0.24 m) with high specific ohmic and auxiliary heating power. First plasma was achieved in Globus-M in 1999. The machine has demonstrated practically all of the project objectives ever since. Target design parameters (aspect ratio-1.5, 2 − X-point configuration, vertical elongation-2.2, traiangularity-0.45, average density-1.0•10 20 m −3 , plasma current-0.3 MA, toroidal beta-12%, auxiliary heating power-1 MW) [2] were achieved and some of them overcame [3,4]. Also Globus-M
Estimates for 2D distributions of electron temperature, T e , electron density, n e , and atomic deuterium density, n 0 , in the JET divertor volume have been inferred from deuterium Balmer line intensity ratios obtained from tomographic reconstructions of divertor camera measurements. This enables also investigation of ionization, S ion , and recombination, S rec , rates. The analysis shows a decrease of T e to 0.5-1.0 eV throughout the outer divertor during detachment in low-confinement (L-mode) plasmas. Simultaneously, the high-n e region and the n 0 distribution in the outer divertor are observed to elongate and shift from the outer strike point towards the X-point. The observations are in qualitative agreement and follow the same sequence with modelling predictions of EDGE2D-EIRENE simulations of a density scan. While the method was found to provide good representation of the evolution of volumetric recombination during detachment, in agreement with the simulations, the movement of the ionization front upstream could not be followed due to lack of spatial overlap between the ionization region and the necessary emission distributions. Consequently, the representation of the ionization conditions and the particle balance in the detached outer divertor are compromised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.