In this paper, a wearable three-antenna system aiming for cellular Internet of Things (IoT) applications is proposed. The presented antenna system consists of two cellular antennas (LTE low-and mid-band antennas) and one GPS antenna designed by using the Theory of Characteristic Mode (TCM). Both the simulated and measured results with good agreements are provided in this work. As a result of successful excitation of chassis modes, the proposed cellular antennas can cover the desired cellular bands between 699-862 MHz and 1710-2155 MHz with corresponding wideband matching circuits. Meanwhile, the proposed GPS antenna operates with a good right hand circular polarization (RHCP) performance (at least 5 dB higher gain than left hand circular polarization (LHCP)). Reasonable isolation performances among three antennas are also gained due to utilization of orthogonal modes. The results also show that with the proximity of human body (wrist phantom), over the wideband operation bands all antennas can achieve good efficiency. The averaged levels of-10 dB,-6 dB, and-4 dB, respectively for LTE low band, mid band and GPS band are achieved, indicating its potential in future wearable cellular IoT applications. Index Terms-wearable antenna, Theory of Characteristic Mode (TCM), small mobile terminal antenna, wristband antenna I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.