The electroencephalogram (EEG) signal plays an important role in the diagnosis of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a time-consuming analysis of the entire length of the EEG data by an expert. The traditional methods of analysis being tedious, many automated diagnostic systems for epilepsy have emerged in recent years. This paper proposes a neural-network-based automated epileptic EEG detection system that uses approximate entropy (ApEn) as the input feature. ApEn is a statistical parameter that measures the predictability of the current amplitude values of a physiological signal based on its previous amplitude values. It is known that the value of the ApEn drops sharply during an epileptic seizure and this fact is used in the proposed system. Two different types of neural networks, namely, Elman and probabilistic neural networks, are considered in this paper. ApEn is used for the first time in the proposed system for the detection of epilepsy using neural networks. It is shown that the overall accuracy values as high as 100% can be achieved by using the proposed system.
Electroencephalogram (EEG) signal plays an important role in the diagnosis of epilepsy. The long-term EEG recordings of an epileptic patient obtained from the ambulatory recording systems contain a large volume of EEG data. Detection of the epileptic activity requires a time consuming analysis of the entire length of the EEG data by an expert. The traditional methods of analysis being tedious, many automated diagnostic systems for epilepsy have emerged in recent years. This paper discusses an automated diagnostic method for epileptic detection using a special type of recurrent neural network known as Elman network. The experiments are carried out by using time-domain as well as frequency-domain features of the EEG signal. Experimental results show that Elman network yields epileptic detection accuracy rates as high as 99.6% with a single input feature which is better than the results obtained by using other types of neural networks with two and more input features.
Fetal magnetocardiography (fMCG) is a noninvasive technique suitable for the prenatal diagnosis of the fetal heart function. Reliable fetal cardiac signals can be reconstructed from multi-channel fMCG recordings by means of independent component analysis (ICA). However, the identification of the separated components is usually accomplished by visual inspection. This paper discusses a novel automated system based on entropy estimators, namely approximate entropy (ApEn) and sample entropy (SampEn), for the classification of independent components (ICs). The system was validated on 40 fMCG datasets of normal fetuses with the gestational age ranging from 22 to 37 weeks. Both ApEn and SampEn were able to measure the stability and predictability of the physiological signals separated with ICA, and the entropy values of the three categories were significantly different at p <0.01. The system performances were compared with those of a method based on the analysis of the time and frequency content of the components. The outcomes of this study showed a superior performance of the entropy-based system, in particular for early gestation, with an overall ICs detection rate of 98.75% and 97.92% for ApEn and SampEn respectively, as against a value of 94.50% obtained with the time-frequency-based system.
The analysis of pathological voice is a challenging and an important area of research in speech processing. Acoustic characteristics of voice are used mainly to discriminate normal voices from pathological voices. This study explores methods to find the ability of acoustic parameters in discrimination of normal voices from pathological voices. An attempt is made to analyze and to classify pathological voice from normal voice in children. The classification of pathological voice from normal voice is implemented using support vector machine (SVM). The normal and pathological voices of children are used to train and test the classifier. A dataset is constructed by recording speech utterances of a set of Tamil phrases. The speech signal is then analyzed in order to extract the acoustic parameters such as the Signal Energy, pitch, formant frequencies, Mean Square Residual signal, Reflection coefficients, Jitter and Shimmer. In this study various acoustic features are combined to form a feature set, so as to detect voice disorders in children based on which further treatments can be prescribed by a pathologist. A Genetic Algorithm (GA) based feature selection is utilized to select best set of features which improves the classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.