The aim of this preliminary investigation was to ascertain the synergetic potential of two process technologies of thermally spraying and HIPing (Hot Isostatic Pressing) for tribological applications and address the key design factors, which need to be considered for successful applications of HIPed thermal spray WC-NiCrBSi coatings. The relative performance of the as-sprayed and hot isostatically pressed WC-NiCrBSi functionally graded coatings was investigated in sliding wear conditions. Results indicate that HIPing post-treatment can improve the sliding wear resistance of WC-NiCrBSi coatings. These coatings were deposited by a High Velocity Oxy-Fuel -JP5000 system and HIPing process was carried out at two different temperatures of 850ºC and 1200ºC. This study shows that un-capsulated HIPing can be successfully applied to functionally graded WC-NiCrBSi coatings, which has economical as well as technical incentives for industrial applications. Sliding wear tests were carried out using a high frequency reciprocating ball on plate rig using steel and ceramic balls. Results are discussed in terms of powder manufacture method, microstructural investigations, phase transformation, mechanical properties and residual stress investigations. Phase analysis by x-ray diffraction revealed transformations, which altered the phase composition such as the elimination of secondary phase W 2 C and metallic W and the formation of new phases containing Ni, Si and B after the post-treatment. The measurements of hardness, Young's modulus and residual stress indicate that substantial improvements can be achieved due to simultaneous application of temperature and pressure during the HIPing post-treatment. Hardness and Young's modulus measured by indentation method, increased after the HIPing process due to the transformations in the morphology and phase composition of the coatings. The residual stress evaluations by sin 2 Ψ technique using synchrotron x-ray diffraction showed a relaxation of residual stress fields in the coating with increasing temperature of the HIPing process.
The principal aim of this study was to compare the sliding wear performance of as-sprayed and Hot Isostatically Pressed (HIPed) thermal spray cermet (WC-12Co) coatings. Results indicate that HIPing technique can be successfully applied to post-treat thermal spray cermet coatings for improved sliding wear performance, not only in terms of coating wear, but also in terms of the total volume loss for test couples. WC-12Co coatings sprayed by a HVOF system were deposited on SUJ-2 bearing steel substrate and then encapsulated and HIPed at 850°C for one hour. A high frequency reciprocating ball on plate rig was used to measure the sliding wear resistance of these coatings in dry conditions under steel and ceramic contact configurations at two different loads. Results are discussed in terms of coating microstructure, microhardness, fracture toughness and residual stress evaluations. Microstructural investigations indicate fundamental changes in grain morphology, whereas x-ray diffraction revealed beneficial transformations in phase composition of these coatings during the HIPing post treatment. The effects of these microstructural changes on the physical properties and wear resistance are discussed.
The aim of this preliminary investigation was to ascertain the synergetic potential of two process technologies of thermally spraying and HIPing (Hot Isostatic Pressing) for tribological applications and address the key design factors, which need to be considered for successful applications of HIPed thermal spray WC-NiCrBSi coatings. The relative performance of the as-sprayed and hot isostatically pressed WC-NiCrBSi functionally graded coatings was investigated in sliding wear conditions. Results indicate that HIPing post-treatment can improve the sliding wear resistance of WC-NiCrBSi coatings. These coatings were deposited by a High Velocity Oxy-Fuel - JP5000 system and HIPing process was carried out at two different temperatures of 850°C and 1200°C. This study shows that un-capsulated HIPing can be successfully applied to functionally graded WC-NiCrBSi coatings, which has economical as well as technical incentives for industrial applications. Sliding wear tests were carried out using a high frequency reciprocating ball on plate rig using steel and ceramic balls. Results are discussed in terms of powder manufacture method, microstructural investigations, phase transformation, mechanical properties and residual stress investigations. Phase analysis by X-ray diffraction revealed transformations, which altered the phase composition such as the elimination of secondary phase W2C and metallic W and the formation of new phases containing Ni, Si and B after the post-treatment. The measurements of hardness, Young’s modulus and residual stress indicate that substantial improvements can be achieved due to simultaneous application of temperature and pressure during the HIPing post-treatment. Hardness and Young’s modulus measured by indentation method, increased after the HIPing process due to the transformations in the morphology and phase composition of the coatings. The residual stress evaluations by sin2Ψ technique using synchrotron x-ray diffraction showed a relaxation of residual stress fields in the coating with increasing temperature of the HIPing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.