The field of sentiment analysis (SA) has grown in tandem with the aid of social networking platforms to exchange opinions and ideas. Many people share their views and ideas around the world through social media like Facebook and Twitter. The goal of opinion mining, commonly referred to as sentiment analysis, is to categorise and forecast a target's opinion. Depending on if they provide a positive or negative perspective on a given topic, text documents or sentences can be classified. When compared to sentiment analysis, text categorization may appear to be a simple process, but number of challenges have prompted numerous studies in this area. A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron (MLP) techniques has been proposed as a way to automate sentiment analysis (SA). In this study, online product reviews can be enhanced by integrating classification and feature election. The firefly (FF) algorithm was used to extract features from online product reviews, and a multi-layer perceptron was used to classify sentiment (MLP). The experiment employs two datasets, and the results are assessed using a variety of criteria. On account of these tests, it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon (98% accuracy) and iPod (99% accuracy).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.