Machine learning is an approach of artificial intelligence (AI) where the machine can automatically learn and improve its performance on experience. It is not explicitly programmed; the data is fed into the generic algorithm and it builds logic based on the data provided. Traditional algorithms have to define new rules or massive rules when the pattern varies or the number of patterns increases, which reduces the accuracy or efficiency of the algorithms. But the machine learning algorithms learn new input patterns capable of handling complex situations while maintaining accuracy and efficiency. Due to its effectual benefits, machine learning algorithms are used in various domains like healthcare, industries, travel, game development, social media services, robotics, and surveillance and information security. In this chapter, the application of machine learning technique in healthcare is discussed in detail.
Gene expression data is popularized for its capability to disclose various disease conditions. However, the conventional procedure to extract gene expression data itself incorporates various artifacts that offer challenges in diagnosis a complex disease indication and classification like cancer. Review of existing research approaches indicates that classification approaches are few to proven to be standard with respect to higher accuracy and applicable to gene expression data apart from unaddresed problems of computational complexity. Therefore, the proposed manuscript introduces a novel and simplified model capable using Graph Fourier Transform, Eigen Value and vector for offering better classification performance considering case study of microarray database, which is one typical example of gene expression data. The study outcome shows that proposed system offers comparatively better accuracy and reduced computational complexity with the existing clustering approaches.
Machine learning is an approach of artificial intelligence (AI) where the machine can automatically learn and improve its performance on experience. It is not explicitly programmed; the data is fed into the generic algorithm and it builds logic based on the data provided. Traditional algorithms have to define new rules or massive rules when the pattern varies or the number of patterns increases, which reduces the accuracy or efficiency of the algorithms. But the machine learning algorithms learn new input patterns capable of handling complex situations while maintaining accuracy and efficiency. Due to its effectual benefits, machine learning algorithms are used in various domains like healthcare, industries, travel, game development, social media services, robotics, and surveillance and information security. In this chapter, the application of machine learning technique in healthcare is discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.