RNA-protein complexes are essential in mediating important fundamental cellular processes, such as transport and localization. In particular, ncRNA-protein interactions play an important role in post-transcriptional gene regulation like mRNA localization, mRNA stabilization, poly-adenylation, splicing and translation. The experimental methods to solve RNA-protein interaction prediction problem remain expensive and time-consuming. Here, we present the RPI-Pred (RNA-protein interaction predictor), a new support-vector machine-based method, to predict protein-RNA interaction pairs, based on both the sequences and structures. The results show that RPI-Pred can correctly predict RNA-protein interaction pairs with ∼94% prediction accuracy when using sequence and experimentally determined protein and RNA structures, and with ∼83% when using sequences and predicted protein and RNA structures. Further, our proposed method RPI-Pred was superior to other existing ones by predicting more experimentally validated ncRNA-protein interaction pairs from different organisms. Motivated by the improved performance of RPI-Pred, we further applied our method for reliable construction of ncRNA-protein interaction networks. The RPI-Pred is publicly available at: http://ctsb.is.wfubmc.edu/projects/rpi-pred.
Motivation: For many biotechnological purposes, it is desirable to redesign proteins to be more structurally and functionally stable at higher temperatures. For example, chemical reactions are intrinsically faster at higher temperatures, so using enzymes that are stable at higher temperatures would lead to more efficient industrial processes. We describe an innovative and computationally efficient method called Improved Configurational Entropy (ICE), which can be used to redesign a protein to be more thermally stable (i.e. stable at high temperatures). This can be accomplished by systematically modifying the amino acid sequence via local structural entropy (LSE) minimization. The minimization problem is modeled as a shortest path problem in an acyclic graph with nonnegative weights and is solved efficiently using Dijkstra's method.Contact: mitchell@biochem.wisc.edu
The description of protein backbone was recently improved with a group of structural fragments called Structural Alphabets instead of the regular three states (Helix, Sheet and Coil) secondary structure description. Protein Blocks is one of the Structural Alphabets used to describe each and every region of protein backbone including the coil. According to de Brevern (2000) the Protein Blocks has 16 structural fragments and each one has 5 residues in length. Protein Blocks fragments are highly informative among the available Structural Alphabets and it has been used for many applications. Here, we present a protein fold recognition method based on Protein Blocks for the annotation of twilight zone sequences. In our method, we align the predicted Protein Blocks of a query amino acid sequence with a library of assigned Protein Blocks of 953 known folds using the local pair-wise alignment. The alignment results with z-value ≥ 2.5 and P-value ≤ 0.08 are predicted as possible folds. Our method is able to recognize the possible folds for nearly 35.5% of the twilight zone sequences with their predicted Protein Block sequence obtained by pb_prediction, which is available at Protein Block Export server.
This article describes the development of a curated online protein block sequence database, PDB‐2‐PB. The protein block sequences for protein structures with complete backbone coordinates have been encoded using the encoding procedure of de Brevern, Etchebest & Hazout [Proteins (2000), 41, 271–287]. In the current release of the PDB‐2‐PB database (version 1.0), the protein entries from a recent release of the World Wide Protein Data Bank (wwPDB), which has 74 297 solved PDB entries as of 7 July 2011, have been used as a primary source. The PDB‐2‐PB database stores the protein block sequences for all the chains present in a protein structure. PDB‐2‐PB version 1.0 has the curated protein block sequences for 103 252 PDB chain entries (93 547 X‐ray, 7033 NMR and 2672 other experimental chain entries). From the PDB‐2‐PB database, users can extract the curated protein block sequence and its corresponding amino acid sequence, which is extracted from the PDB ATOM records. Users can download these sequences either by using the PDB code or by using various parameters listed in the database. The PDB‐2‐PB database is freely available at http://bioinfo.bdu.ac.in/~pb/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.