Metallic nanoparticles have received great attention from chemists, physicists, biologists and engineers who wish to use them for the development of a new generation of nanodevices. In the present study silver nano-particles were synthesized from aqueous silver nitrate through a simple and eco-friendly route using leaf broth of Arbutus unedo, which acted as a reductant and stabilizer simultaneously. The aqueous silver ions when exposed to the leaf broth were reduced and stabilized over long periods of time resulting in the green synthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were appropriately characterized. The results revealed the formation of single crystalline Ag nanoparticles with a nar-row size distribution for each sample. The particles, although discrete, were predominately coated with the organic leaf extract forming small aggregates, which makes them stable over long time periods and highly appropriate for coatings or biotechnology applications.
A very promising method for the conversion and storage of solar energy into a fuel is the dissociation of water to oxygen and hydrogen, carried out via a two-step process using metal oxide redox systems such as mixed iron oxides, coated upon multi-channeled honeycomb ceramic supports capable of absorbing solar irradiation, in a configuration similar to that encountered in automobile exhaust catalytic converters. With this configuration, the whole process can be carried out in a single solar energy converter, the process temperature can be significantly lowered compared to other thermo-chemical cycles and the re-combination of oxygen and hydrogen is prevented by fixing the oxygen in the metal oxide. For the realization of the integrated concept, research work proceeded in three parallel directions: synthesis of active redox systems, manufacture of ceramic honeycomb supports and manufacture, testing and optimization of operating conditions of a thermochemical solar receiver-reactor. The receiver-reactor has been developed and installed in the solar furnace in Cologne, Germany. It was proven that solar hydrogen production is feasible by this process demonstrating that multi cycling of the process was possible in principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.