ZnO thin films have been grown heteroepitaxially on epi-GaN/sapphire (0001) substrates. Rutherford backscattering spectroscopy, ion channeling, and high resolution transmission electron microscopy studies revealed high-quality epitaxial growth of ZnO on GaN with an atomically sharp interface. The x-ray diffraction and ion channeling measurements indicate near perfect alignment of the ZnO epilayers on GaN as compared to those grown directly on sapphire (0001). Low-temperature cathodoluminescence studies also indicate high optical quality of these films presumably due to the close lattice match and stacking order between ZnO and GaN. Lattice-matched epitaxy and good luminescence properties of ZnO/GaN heterostructures are thus promising for ultraviolet lasers. These heterostructures demonstrate the feasibility of integrating hybrid ZnO/GaN optoelectronic devices.
ZnO thin films with near perfect crystallinity have been grown epitaxially on sapphire ͑001͒ by pulsed laser deposition technique. The-rocking curve full width at half-maximum of the ZnO͑002͒ peak for the films grown at 750°C, oxygen pressure 10 Ϫ5 Torr was 0.17°. The high degree of crystallinity was confirmed by ion channeling technique providing a minimum Rutherford backscattering yield of 2%-3% in the near-surface region (ϳ2000 Å). The atomic force microscopy revealed smooth hexagonal faceting of the ZnO films. It has been possible to deposit epitaxial AlN films of thickness 1000 Å on epi-ZnO/sapphire. Excellent crystalline properties of these epi-ZnO/sapphire heterostructures are, thus, promising for lattice-matched substrates for III-V nitride heteroepitaxy and optoelectronics devices.
Oxide heterostructures were used for studies of quasiparticle injection effects in high-Tc superconducting thin films. The effect of injection of spin polarized quasiparticles from a ferromagnetic gate layer was compared to that of unpolarized quasiparticles from a nonmagnetic metallic gate. Transport measurements of the superconducting layer showed strong suppression in the supercurrent by the injection of spin-polarized quasiparticles, and a current gain of as large as five was attained. This is 10 to 30 times larger than the gain of unpolarized injection devices. Such large effects could be useful in a variety of active high-Tc superconductor/colossal magnetoresistance heterostructure based devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.