Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.
The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Model studies of the coma will be required not only for planning of the mission and interpretation of spacecraft data, but also for an expectedly large amount of complementary remote observational data that will be obtained in the meantime. A full-scale simulation of the coma under conditions occurring during the mission can be done only on the basis of a kinetic model. In this work we present a newly developed direct simulation Monte Carlo model of a multispecies coma, where components of the coma are coupled through momentum exchange and photochemical processes, and its application to the case of comet Churyumov-Gerasimenko. It is shown that kinetic effects determine the state of the coma, which limits applicability of a hydrodynamics approach. The study of the coma was performed in the region starting from the surface of the nucleus and extending up to 10 6 km, which allows incorporation of a realistic model of the gas production from the nucleus from a thermophysical model of a porous ice/dust mixture accounting for the thermal reradiation, the subsurface sublimation and recondensation, and the subsurface mass and energy transport. The results obtained present states of the coma for a series of stages throughout the Rosetta mission and can serve for the planning of the mission as well as for the interpretation of ground-based observations during the 2009 and 2016 apparitions.
We examine the evolution of the water production of comet 67P/Churyumov-Gerasimenko during the Rosetta mission (2014 June-2016 May) based on in situ and remote sensing measurements made by Rosetta instruments, Earth-based telescopes and through the development of an empirical coma model. The derivation of the empirical model is described and the model is then applied to detrend spacecraft position effects from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) data. The inter-comparison of the instrument data sets shows a high level of consistency and provides insights into the water and dust production. We examine different phases of the orbit, including the early mission (beyond 3.5 au) where the ROSINA water production does not show the expected increase with decreasing heliocentric distance. A second important phase is the period around the inbound equinox, where the peak water production makes a dramatic transition from northern to southern latitudes. During this transition, the water distribution is complex, but is driven by rotation and active areas in the north and south. Finally, we consider the perihelion period, where there may be evidence of time dependence in the water production rate. The peak water production, as measured by ROSINA, occurs 18-22 d after perihelion at 3.5 ± 0.5 × 10 28 water molecules s −1. We show that the water production is highly correlated with ground-based dust measurements, possibly indicating that several dust parameters are constant during the observed period. Using estimates of the dust/gas ratio, we use our measured water production rate to calculate a uniform surface loss of 2-4 m during the current perihelion passage.
The Jovian moon, Europa, hosts a thin neutral gas atmosphere, which is tightly coupled to Jupiter's magnetosphere. Magnetospheric ions impacting the surface sputter off neutral atoms, which, upon ionization, carry currents that modify the magnetic field around the moon. The magnetic field in the plasma is also affected by Europa's induced magnetic field. In this paper we investigate the environment of Europa using our multifluid MHD model and focus on the effects introduced by both the magnetospheric and the pickup ion populations. The model self‐consistently derives the electron temperature that governs the electron impact ionization process, which is the major source of ionization in this environment. The resulting magnetic field is compared to measurements performed by the Galileo magnetometer, the bulk properties of the modeled thermal plasma population is compared to the Galileo Plasma Subsystem observations, and the modeled surface precipitation fluxes are compared to Galileo Ultraviolet Spectrometer observations. The model shows good agreement with the measured magnetic field and reproduces the basic features of the plasma interaction observed at the moon for both the E4 and the E26 flybys of the Galileo spacecraft. The simulation also produces perturbations asymmetric about the flow direction that account for observed asymmetries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.