Properties of different scintillating fibers were examined and compared, as a part of the design optimization of the SiFi-CC detector, currently under development for proton therapy monitoring. Three scintillating materials were considered as candidates to constitute the active part of the detector: LYSO:Ce, LuAG:Ce and GAGG:Ce. All investigated samples had an elongated, fiber-like shape and were read out on both ends using silicon photomultipliers (SiPMs). Samples of LYSO:Ce material provided by four different manufacturers were included in the survey. Additionally, different types of optical coupling media, wrapping and coating materials were investigated. The following properties of the scintillating fibers were determined: attenuation length, position-, energy-, timing resolution and light collection. Two models were used to describe the propagation of scintillating light in the fiber and quantify the light attenuation: exponential light attenuation model (ELA) and exponential light attenuation model with light reflection (ELAR). Energy and position reconstruction were also performed using the two above methods. It was shown, that the ELAR model performs better in terms of description of the light attenuation process. However, energy and position reconstruction results are comparable for the two proposed methods. Based on the results of measurements with scintillating fibers in different configurations we concluded that LYSO:Ce fibers wrapped in Al foil (bright side facing towards the fiber) provided the best trade-off between the energy- (8.56% at 511 keV) and position (32 mm) resolutions and thus will be the optimal choice for the SiFi-CC detector. Additionally, the study of different optical coupling media showed, that the silicone pads coupling ensures good stability of the system performance and parameters.
Results presented in this contribution are obtained within the Low Energy Nuclear Physics International Collaboration (LENPIC). LENPIC aims to develop chiral nucleon-nucleon and many-nucleon interactions complete through at least the fourth order in the chiral expansion. These interactions will be used together with consistently derived current operators to solve the structure and reactions of light and medium-mass nuclei including electroweak processes. In this contribution the current status of the chiral nuclear forces and current operators will be briefly discussed. A special role played by the calculations of nucleon-deuteron scattering will be explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.