Cells were cultivated on transparent conductive substrates. glass slides coated with indium oxide: individual cells were marked with a diamond indentor. Cell cultures were frozen ( -15"C), thawed, and then stained with fluorescent dyes to determine cell damage. The marked cells were examined by phase contrast. fluorescence, and Nomarski DIC microscopy. After aldehyde and osmium tetroxide fixation, the cell preparations were sequentially treated with tannic acid, uranyl acetate, and lead citrate. The same marked cell could be sequentially studied by light microscopy (LM; in water immersion conditions), scanning electron microscopy (SEM; after dehydration and critical point drying), and transmission electron microscopy (TEM: after embedding of cell samples in epoxy resin and laser marking of the cell previously marked with a diamond indentor). The method used ensures good preservation of cell morphology, cell surface relief, and intracellular structures. The treatment used renders the cells conductive and permitted SEM of uncoated culture cells on conductive substrates.
The aim of this study was to investigate NO- and lipid peroxidation (LPO)-related airway reactivity and its correlation to ventilation disorders in different clinical variants of asthma. NO, malone dialdehyde, IL-4, TNF-α, and IgE were measured in BAL fluid and blood serum of 39 asthma patients and 15 healthy volunteers matched for age and gender.In patients with stable asthma, airflow parameters in small and medium airways were significantly decreased compared to those of healthy persons. Concentrations of key cytokines of atopic inflammation in BAL fluid and serum were increased in asthma patients. Serum IgE tended to decrease and IL-4 and TNF-α in BAL fluid increased in asthma patients while the disease worsened. Inverse correlations were found between NO and TNF-α, malone dialdehyde concentration and parameters of bronchial obstruction.In conclusion, NO production in airways is caused by strong accumulation of inflammatory cells with high metabolic activity resulting in release of inflammatory and pro-inflammatory cytokines which regulate immunopathological reagine-induced inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.