We study the phase space structure and the quantization of a pointlike particle in (2 + 1)-dimensional gravity. By adding boundary terms to the first-order Einstein-Hilbert action, and removing all redundant gauge degrees of freedom, we arrive at a reduced action for a gravitating particle in 2+1 dimensions, which is invariant under Lorentz transformations and a group of generalized translations. The momentum space of the particle turns out to be the group manifold SL(2). Its position coordinates have non-vanishing Poisson brackets, resulting in a non-commutative quantum spacetime. We use the representation theory of SL(2) to investigate its structure. We find a discretization of time, and some semi-discrete structure of space. An uncertainty relation forbids a fully localized particle. The quantum dynamics is described by a discretized Klein-Gordon equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.