Adamantyl groups are widely used in medicinal chemistry. However, metabolism limits their usage. Herein, we report the first systematic study of adamantyl ureas and diureas bearing substituents in bridgehead positions of adamantane and/or spacers between urea groups and adamantane group, and tested their effects on soluble epoxide hydrolase inhibitor potency and metabolic stability. Interestingly, the effect on activity against human and murine sEH varied in opposite ways with each new methyl group introduced into the molecule. Compounds with three methyl substituents in adamantane were very poor inhibitors of murine sEH while still very potent against human sEH. In addition, diureas with terminal groups bigger than sEH catalytic tunnel diameter were still good inhibitors suggesting that the active site of sEH opens to capture the substrate or inhibitor molecule. The introduction of one methyl group leads to 4-fold increase in potency without noticeable loss of metabolic stability compared to the unsubstituted adamantane. However, introduction of two or three methyl groups leads to 8-fold and 98-fold decrease in stability in human liver microsomes for the corresponding compounds.
A series of inhibitors of the soluble epoxide hydrolase (sEH) containing two urea groups has been developed. Inhibition potency of the described compounds ranges from 2.0 μM to 0.4 nM. 1,6-(hexamethylene)bis[(adamant-1-yl)urea] (3b) was found to be a potent slow tight binding inhibitor (IC50 = 0.5 nM) with a strong binding to sEH (Ki = 3.1 nM) and a moderately long residence time on the enzyme (koff = 1.05×10−3 s−1; t1/2 = 11 min).
A series of inhibitors of the soluble epoxide hydrolase (sEH) containing one or two thiourea groups has been developed. Inhibition potency of the described compounds ranges from 50 μM to 7.2 nM. 1,7-(Heptamethylene)bis[(adamant-1-yl)thiourea] (6f) was found to be the most potent sEH inhibitor, among the thioureas tested. The inhibitory activity of the thioureas against the human sEH is closer to the value of activity against rat sEH rather than murine sEH. While being less active, thioureas are up to 7-fold more soluble than ureas, which makes them more bioavailable and thus promising as sEH inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.