The development of practical, efficient and atom-economical methods of formation of carbon-phosphorus bonds remains a topic of considerable interest for the current synthetic organic chemistry and electrochemistry. This review summarizes selected topics from the recent publications with particular emphasis on phosphine and phosphine oxides formation from white phosphorus, chlorophosphines in electrocatalytic processes using aryl, hetaryl or perfluoroalkyl halides as reagents. This review includes selected highlights concerning recent progress in modification of catalytic systems for aromatic C–H bonds phosphonation involving metal-catalyzed ligand directed or metal-induced oxidative processes. Furthermore, a part of this review is devoted to phosphorylation of olefins with white phosphorus under reductive conditions in water-organic media. Finally, we have also documented recent advances in ferrocene C–H activation and phosphorylation.
The efficient catalysis of oxidative alkylation and fluoroalkylation of aromatic C-H bonds is of paramount importance in the pharmaceutical and agrochemical industries, and requires the development of convenient Ag0-based nano-architectures with high catalytic activity and recyclability. We prepared Ag-doped silica nanoparticles (Ag0/+@SiO2) with a specific nano-architecture, where ultra-small sized silver cores are immersed in silica spheres, 40 nm in size. The nano-architecture provides an efficient electrochemical oxidation of Ag+@SiO2 without any external oxidant. In turn, Ag+@SiO2 5 mol% results in 100% conversion of arenes into their alkylated and fluoroalkylated derivatives in a single step at room temperature under nanoheterogeneous electrochemical conditions. Negligible oxidative leaching of silver from Ag0/+@SiO2 is recorded during the catalytic coupling of arenes with acetic, difluoroacetic and trifluoroacetic acids, which enables the good recyclability of the catalytic function of the Ag0/+@SiO2 nanostructure. The catalyst can be easily separated from the reaction mixture and reused a minimum of five times upon electrochemical regeneration. The use of the developed Ag0@SiO2 nano-architecture as a heterogeneous catalyst facilitates aromatic C-H bond substitution by alkyl and fluoroalkyl groups, which are privileged structural motifs in pharmaceuticals and agrochemicals.
A new iron-catalyzed reaction for the coupling of perfluoroalkyl iodides (RFI) with aromatic substrates is described. The perfluoroalkylated arene products are obtained in good to excellent yields in the presence of a [(bpy)Fe(ii)] catalyst (10%) electrochemically regenerated or generated from [(bpy)Fe(iii)] at room temperature. The development, scope, and preliminary mechanistic studies of these transformations are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.