The anisotropic magnetic properties of the metallic layered compound with hexagonal crystal structure 2H-NbSe2 are investigated as a function of their dependence on high-energy electron irradiation. Pauli paramagnetism of free electrons is shown to dominate the magnetic susceptibility, P. The anisotropy is related to spin-orbit effects on the hybridized electronic states. Irradiation affects the density of states at the Fermi surface, increasing both P and the anisotropy. Below a threshold temperature, TS=54 K, the paramagnetic contribution, which increases with the dose, is ascribed to dangling bonds, nanotubes and nanorods generated by irradiation.
The magnetic properties of 2H-NbSe2, a layered metal with a hexagonal structure of the crystal lattice, are measured, and the change of those properties after irradiation with high-energy electrons is investigated. It is shown that the main part of the magnetic susceptibility comes from the Pauli paramagnetism of free charge carriers. The low-temperature deviations from Pauli paramagnetism are explained by dangling interatomic bonds, which are present in small numbers even in the unirradiated samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.