BackgroundOpisthorchiasis is a parasitic infection caused by the liver flukes of the Opisthorchiidae family. Both experimental and epidemiological data strongly support a role of these parasites in the etiology of the hepatobiliary pathologies and an increased risk of intrahepatic cholangiocarcinoma. Understanding a functional link between the infection and hepatobiliary pathologies requires a detailed description a host-parasite interaction on different levels of biological regulation including the metabolic response on the infection. The last one, however, remains practically undocumented. Here we are describing a host response on Opisthorchiidae infection using a metabolomics approach and present the first exploratory metabolomics study of an experimental model of O. felineus infection.Methodology and Principal findingsWe conducted a Nuclear Magnetic Resonance (NMR) based longitudinal metabolomics study involving a cohort of 30 animals with two degrees of infection and a control group. An exploratory analysis shows that the most noticeable trend (30% of total variance) in the data was related to the gender differences. Therefore further analysis was done of each gender group separately applying a multivariate extension of the ANOVA—ASCA (ANOVA simultaneous component analysis). We show that in the males the infection specific time trends are present in the main component (43.5% variance), while in the females it is presented only in the second component and covers 24% of the variance. We have selected and annotated 24 metabolites associated with the observed effects and provided a physiological interpretation of the findings.ConclusionsThe first exploratory metabolomics study an experimental model of O. felineus infection is presented. Our data show that at early stage of infection a response of an organism unfolds in a gender specific manner. Also main physiological mechanisms affected appear rather nonspecific (a status of the metabolic stress) the data provides a set of the hypothesis for a search of the more specific metabolic markers of the Opisthorchiidae infection.
It is established that oxidative stress induces insulin resistance of adipocytes, increases secretion leptin, IL-6, TNF-α by adipocytes. Adiponectin secretion by adipocytes is reduced after the action of reactive oxygen species. Metabolic syndrome contributes to oxidative stress in adipose tissue, on the one hand due to the activation of production of reactive oxygen species by adipocyte NADPH-oxidase, and on the other hand by reducing the antioxidant defense adipocytes. It is found that obesity itself can induce oxidative stress. Chronic stress, glucocorticoids, mineralocorticoids, angiotensin-II, TNF-α play an important role in the pathogenesis of oxidative stress of adipocytes. Metformin remains the cure for the treatment of insulin resistance. The positive results in the treatment of metabolic syndrome by losartan were obtained. Antioxidants and flavonoids exhibit a positive impact on the course of the experimental metabolic syndrome.
Purpose Liver fluke causes severe liver damage in an infected human. However, the infection often remains neglected due to the lack of pathognomonic signs. Nanoparticle-enhanced magnetic resonance imaging (MRI) offers a promising technique for detecting liver lesions induced by parasites. Materials and methods Surface modification of iron oxide nanoparticles produced by coprecipitation from a solution of Fe 3+ and Fe 2+ salts using 3-aminopropylsilane (APS) was carried out. The APS-modified nanoparticles were characterized by transmission electron microscopy, fourier transform infrared spectroscopy, and thermogravimetric analysis. Magnetic resonance properties of MNPs were investigated in vitro and in vivo. Results The amount of APS grafted on the surface of nanoparticles (0.60±0.06 mmol g −1 ) was calculated based on elemental analysis and infrared spectroscopy data. According to transmission electron microscopy data, there were no essential changes in the structure of nanoparticles during the modification. The APS-modified nanoparticles exhibit high magnetic properties; the calculated relaxivity r 2 was 271 mmol −1 s −1 . To obtain suspension with optimal hydrodynamic characteristics, amino groups on the surface of nanoparticles were converted into an ionic form with HCl. Cellular uptake of modified nanoparticles by rat hepatoma cells and human monocytes in vitro was 74.1±4.5 and 10.0±3.7 pg [Fe] per cell, respectively. Low cytotoxicity of the nanoparticles was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Annexin V/7-aminoactinomycin D flow cytometry assays. For the first time, magnetic nanoparticles were applied for contrast-enhanced MRI of liver lesions induced by Opisthorchis felineus . Conclusion The synthesized APS-modified iron oxide nanoparticles showed high efficiency as an MRI contrast agent for the evaluation of opisthorchiasis-related liver damage.
MCF-7 breast cancer cells and HBL-100 breast epithelial cells were cultured with N-ethylmaleimide, a blocker of SH groups. Changes in redox potential of the glutathione system, activities of glutathione reductase, glutathione peroxidase, and intensity of apoptotic cell death were evaluated. The results indicate that incubation with N-ethylmaleimide led to glutathione system imbalance, reduced tumor cell redox potential, and induced their programmed death, which seemed useful for prospective target therapy of tumor diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.