Abstract. pH-Responsive microspheres were prepared and their feasibility as potential carriers for oral delivery of protein drugs was evaluated. The microspheres were prepared from the ionotropically-crosslinked mixture of sodium alginate and κ-carrageenan. The morphology and size of the microspheres were investigated. A model protein drug α-amylase was entrapped and in vitro drug release profiles were established. The preliminary investigation of the microspheres showed a consistent swelling pattern, high entrapment efficiency and sustained release profiles of the enzyme. All the results indicated that the alginate/κ-carrageenan microspheres could be potentially useful in drug delivery systems.
Abstract.1 The photocatalityc nanocomposite membranes with tin(IV) oxide nanoparticles were obtained by "layerby-layer" self-assembly. Polyelectrolyte complexes with different nature were analyzed as a binder for nanocatalysts. PEI was used as a positively charged polyelectrolyte, and CMC, sodium alginate, κ-or ι-carrageenans were used as negatively charged ones. The presence of SnO 2 on the membrane surface was confirmed by a scanning electron microscopy (SEM). Polyelectrolyte complexation was studied by zeta-potential measurement. The photocatalytic activity of the nanocomposite membranes was evaluated in the process of milk nanofiltration. The modification of polyethersulfone membranes with polyelectrolyte layers and SnO 2 nanoparticles allowed to produce a highly concentrated retentate and membrane flux remained stable for over 8 h.
2+ z wody za pomocą membran PVDF modyfikowanych nanocząstkami magnetytu, wspomagane ultrafiltracją z polielektrolitemThe aim of this study was to show results of Fe 2+ removal from water by polyelectrolyte enhanced ultrafiltration on polyvinylidene fluoride membranes modified with magnetite nanoparticles. Magnetite nanoparticles were synthesized by the co-precipitation method and stabilized with sodium polyacrylate. At first stage, the surface of PVDF membranes was modified by grafting of polyethylenimine. At the second stage the polyelectrolyte, grafted to the membrane surface, was used as a linker for magnetite nanoparticles immobilization. The modification of membranes was confirmed by IR spectroscopy, scanning electron microscopy and electro kinetic analysis. The dependence of zeta-potential on pH for PVDF membrane modified with PEI has confirmed the modification of the membrane surface as zeta-potential increases with pH decrease. SEM has shown that the surface of modified membrane is densely covered with nanoparticles, which form clusters. The dependence of the volumetric flux on the applied pressure at various concentrations of the carboxymethylcellulose (CMC) has been studied. Polyelectrolyte enhanced ultrafiltration with CMC has been used for iron(II) removal at initial Fe 2+ concentration of 20 mg/L. The concentrations of iron(II) in permeate using an unmodified membrane has ranged from 0.6 to 1.0 mg/L, whereas for the modified membrane it has been 0.02÷0.08 mg/L.
Зважаючи на хімічну стійкість та інертність полімера, полівініліденфлуоридні мембрани широко використовуються у процесах концентрування, розділення та фракціонування речовин різної хімічної природи. Через гідрофобність поверхні дані мембрани найбільш схильні до забруднення, що суттєво знижує термін їхньої експлуатації. Дана робота присвячена розробці методики модифікування поверхні полівініліденфлуоридних мембран водорозчинними полімерами, що містять аміногрупи: поліетиленіміном (ПЕІ) розгалуженої структури та поліаліламінгідрохлоридом лінійної структури. Перевагою та новизною даного методу є простота модифікації (в одну стадію) та використання дешевих і неагресивних реагентів. Прищеплений до поверхні мембран полімер був використаний як спейсер для іммобілізації наночастинок магнетиту. Магнітні наночастинки, закріплені на полімерному спейсері, при накладанні зовнішнього магнітного поля створюють коливання в дифузійному примембранному шарі та викликають додаткову турбулізацію. Модифікація мембран поліетиленіміном та поліаліламінгідрохлоридом підтверджена методом ІЧ-спектроскопії. Іммобілізація наночастинок магнетиту на мембранах підтверджена методом сканувальної електронної мікроскопії. Поверхневі властивості модифікованих мембран досліджені за допомогою електрокінетичного аналізу. Показано, що прищеплення розгалуженого спейсера ПЕІ вдвічі збільшує дзета-потенціал поверхні мембран у порівнянні з лінійним. Транспортні властивості магнітоактивних мембран вивчені у процесі ультрафільтрації розчинів БСА. Досліджена залежність об'ємного потоку через мембрани від прикладеного тиску при різних концентраціях білка. Показано, що іммобілізація наночастинок магнетиту на мембрані та їхній рух у примембранному шарі під впливом магнітного поля знижує ефект концентраційної поляризації.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.