The phytohormone salicylic acid (SA) is well known for its induction of pathogenesis-related proteins and systemic acquired resistance; SA also has specific effects on plant growth and development. Here we analyzed the effect of SA on Arabidopsis (Arabidopsis thaliana) root development. We show that exogenous SA treatment at low (below 50 mM) and high (greater than 50 mM) concentrations affect root meristem development in two different PR1-independent ways. Low-concentration SA promoted adventitious roots and altered architecture of the root apical meristem, whereas high-concentration SA inhibited all growth processes in the root. All exposures to exogenous SA led to changes in auxin synthesis and transport. A wide range of SA treatment concentrations activated auxin synthesis, but the effect of SA on auxin transport was dose dependent. Mathematical modeling of auxin synthesis and transport predicted auxin accumulation or depletion in the root tip following low-or highconcentration SA treatments, respectively. SA-induced auxin accumulation led to the formation of more layers of columella initials, an additional cortical cell layer (middle cortex), and extra files of epidermis, cortex, and endodermis cells. Suppression of SHORT ROOT and activation of CYCLIN D6;1 mediated the changes in radial architecture of the root. We propose that lowconcentration SA plays an important role in shaping root meristem structure and root system architecture.
BackgroundTheauxin efflux carrier PIN1 is a key mediator of polar auxin transport in developing plant tissues. This is why factors that are supposed to be involved in auxin distribution are frequently tested in the regulation of PIN1 expression. As a result, diverse aspects of PIN1 expression are dispersed across dozens of papers entirely devoted to other specific topics related to the auxin pathway. Integration of these puzzle pieces about PIN1 expression revealed that, along with a recurring pattern, some features of PIN1 expression varied from article to article. To determine if this uncertainty is related to the specific foci of articles or has a basis in the variability of PIN1 gene activity, we performed a comprehensive 3D analysis of PIN1 expression patterns in Arabidopsis thaliana roots.ResultsWe provide here a detailed map of PIN1 expression in the primary root, in the lateral root primordia and at the root-shoot junction. The variability in PIN1 expression pattern observed in individual roots may occur due to differences in auxin distribution between plants. To simulate this effect, we analysed PIN1 expression in the roots from wild type seedlings treated with different IAA concentrations and pin mutants. Most changes in PIN1 expression after exogenous IAA treatment and in pin mutants were also recorded in wild type but with lower frequency and intensity. Comparative studies of exogenous auxin effects on PIN1pro:GUS and PIN1pro:PIN1-GFP plants indicated that a positive auxin effect is explicit at the level of PIN1 promoter activity, whereas the inhibitory effect relates to post-transcriptional regulation.ConclusionsOur results suggest that the PIN1 expression pattern in the root meristem accurately reflects changes in auxin content. This explains the variability of PIN1 expression in the individual roots and makes PIN1 a good marker for studying root meristem activity.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0685-0) contains supplementary material, which is available to authorized users.
In plants, salicylic acid (SA) is a hormone that mediates a plant’s defense against pathogens. SA also takes an active role in a plant’s response to various abiotic stresses, including chilling, drought, salinity, and heavy metals. In addition, in recent years, numerous studies have confirmed the important role of SA in plant morphogenesis. In this review, we summarize data on changes in root morphology following SA treatments under both normal and stress conditions. Finally, we provide evidence for the role of SA in maintaining the balance between stress responses and morphogenesis in plant development, and also for the presence of SA crosstalk with other plant hormones during this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.