The spotted alfalfa aphid (SAA), Therioaphis trifolii maculata (Buckton), causes a characteristic veinal chlorosis and necrosis in the growing tips of susceptible cultivars of alfalfa. The pea aphid, Acyrthosiphon pisum (Harris), causes general degenerative changes in alfalfa but no specific, local symptoms. Biochemical and electrophoretic analyses detected similar enzymes in the ejected saliva of either species: pectin methylesterase, endopolygalacturonase and at least three isozymes of a copper dependent oxido‐reductase that showed both catechol oxidase and peroxidase activity. Pectinase and catechol oxidase activities per unit of soluble protein were much greater in the saliva of pea aphid compared with that of SAA. The isozymes of the oxidase from SAA were roughly half the molecular weights of the corresponding isozymes from pea aphid, however, and radiotracer studies showed that soluble secretions injected into alfalfa by SAA travelled to growing tips considerably faster than the secretions of pea aphid. It is suggested that differences in the lesions caused by these aphids may be due to reaction kinetics rather than specific salivary toxins; that the rate of arrival of salivary components, possibly the oxidases, at phloem unloading sites may determine whether the plant's local defensive system is able to repress the immediate challenge or undergoes a run‐away reaction leading to necrosis.
The role of Hemipteran saliva and salivary enzymes is central to an understanding of the etiology of damage that these insects cause to plants. The dilute nature of the salivary secretions and the minute quantities in which they are often obtainable have made analysis and detection of salivary components very difficult. Such investigations in this laboratory have led us to formalise the techniques involved and we believe that the compilation of these methods presented herein may be useful to other research workers in this area. Methods are described for acid and alkaline phosphatase, esterase, pglucosidase, carbohydrases, invertase, amylase, proteinase, pectinase, cellulase, catalase, peroxidase, catechol oxidase, superoxide dismutase and ascorbic oxidase.
A new mark‐capture technique involving field applications of Bacillus thuringiensis Berliner (Bt) to study the dispersal of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), was investigated as a tool to improve information on the potential impact of insect pest dispersal on crop infestation and insecticide resistance. The acquisition and persistence of Bt on moths were characterized and potential contamination of moths from naturally occurring Bts was examined. This mark‐capture technique was developed to mark larger numbers of moths than had been previously achieved with laboratory marking using fluorescent dyes in mark‐release‐recapture experiments. Applications of commercial preparations of Bt to 0.3 and 1.0 ha potato fields were estimated to have marked ca. 50 000 moths in each experiment. Pheromone trap catches of potato tuber moths in the Bt‐sprayed fields and in potato fields at distances of ca. 80, 200, 350, and 750 m were assayed for the Bt marker using selective microbiological media and identification of characteristic Bt crystal inclusions. Marking rates of moths were 78–100% in the sprayed fields and, compared with our previous mark‐release‐recapture studies, marking at ca. 200 m was increased by 15–18‐fold to >3.0 moths per trap. This capture rate allowed the calculation of a dispersal curve that improved the reliability of estimates of movement at farm‐scale distances. These estimates indicated that 10% of the population dispersed to 240 m in 3 days, and suggested that moths can potentially disperse throughout a typical potato‐growing area in one growing season. This level of dispersal has implications for the spread and management of potato tuber moth populations, especially if insecticide resistance is present.
Mating of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), was investigated in relation to the dispersal of males in laboratory and field trials. The effect of stimulating the flight of males to light sources in a large cage on their mating ability was estimated for three age groups, and compared with similar estimates for confined moths. Although the mating of males declined with ages of up to 15 days, simulated dispersal had no effect on subsequent mating when the males were paired with virgin females. The dispersal of male moths was also categorised by the initial flight activity of untethered moths to a light source. Scores for poor, moderate, and good flight provided a repeatable measure of initial male flight activity, but the degree of activity was not related to their subsequent mating ability. In the field, virgin female potato tuber moths were tethered at various distances from the edge of isolated potato crops and then dissected to determine their mating status. Female mating frequency averaged 75% at the crop margin, remained above 50% up to 200 m, and then declined to 19% at 360 m from the margin. Derivation of the mating probability for an individual male potato tuber moth confirmed earlier work by other researchers that has indicated a tendency for dispersal prior to mating, and that males retain their ability to mate as they disperse from a crop. The influence of dispersal and mating on gene flow between crops, and its potential effects on refuge size required to minimise the development of resistance to Bt transgenic potato crops was examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.