A review on the distribution and biological effects of carnosine and a hypothesis for its biological mechanisms of action are presented. Carnosine and its structural and functional relative, anserine, were found in skeletal muscles at the beginning of the century. Their effects on muscle-working capacity, on the stability of membrane-bound enzymes, as well as their potent immunomodulating property, could not be explained by their pH-buffering capacity or formation of the secondary metabolites histidine and beta-alanine alone. This article suggests that the basis for the biological activities of carnosine and relative compounds is their potent antioxidant and membrane-protecting activity. The plausible chemical mechanism of this activity is discussed, and data regarding the usage of carnosine as a drug for treatment of immunodeficiency are summarized.
Low-energy He-Ne laser (0.5-83 Hz) of changeable frequency specifically increases the resistance of erythrocytes of patients after acute stroke to lipid peroxidation (LPO) induced by hydrogen peroxide. Increase in frequency of illumination increases the efficiency. The same treatment does not affect the LPO process in erythrocytes prepared from healthy donors. Laser beam treatment suggests to provide a reorganization of membrane structure resulting in increase of the antioxidant defense of the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.