The Primordial Black Holes (PBHs) are a well-established probe for new physics in the very early Universe. We discuss here the possibility of PBH agglomeration into clusters that may have several prominent observable features. The clusters can form due to closed domain walls appearance in the natural and hybrid inflation models whose subsequent evolution leads to PBH formation. The dynamical evolution of such clusters discussed here is of crucial importance. Such a model inherits all the advantages of uniformly distributed PBHs, like possible explanation of supermassive black holes existence (origin of the early quasars), the binary black hole mergers registered by LIGO/Virgo through gravitational waves, which could provide ways to test the model in future, the contribution to reionization of the Universe. If PBHs form clusters, they could alleviate or completely avoid existing constraints on the abundance of uniformly distributed PBHs, thus allowing PBH to be a viable dark matter candidate. Most of the existing constraints on uniform PBH density should be re-considered to the case of PBH clustering. Furthermore, unidentified cosmic gamma-ray point-like sources could be (partially) accounted. We conclude that models leading to PBH clustering are favored compared to models predicting the uniform distribution of PBHs.
We study restrictions imposed on the parameters of the Kaluza-Klein extra space supplied by the standard inflationary models. It is shown that the size of the extra space cannot be larger than ∼ 10 −27 cm and the Ddimensional Planck mass should be larger than ∼ 10 13 GeV. The validity of these estimates is discussed.We also study the creation of stable excitations of scalar field as the result of the extra metric evolution. arXiv:1903.05725v1 [gr-qc]
Production of domain walls and string-like solitons in the model with two real scalar fields and potential with at least one saddle point and a local maximum is considered. The model is regarded as 2-dimensional spatial slices of 3-dimensional entire structures. It is shown that, in the early Universe, both types of solitons may appear. In addition, the qualitative estimate of the domain walls and strings formation probabilities is presented. It is found that the probability of the formation of string-like solitons is suppressed compared to that of domain walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.