Seismicity migration is studied by a new method based on space-time diagrams and a combination of cluster and regression analyses. Data from the global and Baikal regional earthquake catalogues are analysed with the application of the specially designed geographic information system (GIS) in order to establish parameters and mechanisms of seismicity migration in space and time. We study the migration of seismic events in the following geostructural systems: the Baikal rift zone (BRZ), the area between BRZ and the Indo-Eurasian interplate collision zone, the area between BRZ and the West-Pacific seismic foci Benoiff zone, and two segments of the Middle Atlantic ridge.As evidenced by the obtained results, studying regimes of seismic migration provides for analyses of space-time distribution of seismic energy in the fault-block structure of the lithosphere and facilitates more detailed studies of the origin of deformation waves and mechanisms of the seismotectonic regime of the Earth. Forward (from the equator) and backward (towards the equator) migration of seismic events are established in all the regions under study. It is assumed that this phenomenon may result from regular changes of the polar compression of the Earth due to variations of its rotation regime. Besides, it is revealed that energy clusters of migration are regularly generated, and the regularity may be related to the 11-year cycle of the solar activity which impacts the seismic regime. We discuss the need to study the interference of wave deformations in the lithosphere which are initiated by several external energy sources. It is proposed to consider the regimes of planetary seismicity migration as a reflection of redistribution of endogenic (primarily heat) energy of the Earth during the destruction of its lithospheric shell under the impacts of cosmogenic factors via triggering mechansms. With reference to our positive experiences of applying the proposed concept to BRZ, we consider possibilities of using the seismicity migration data for prediction of earthquakes in the planetary and regional scales. Институт земной коры СО РАН, Иркутск, РоссияАннотация: Изучение процессов сейсмомиграции проводилось новым методом построения пространствен-но-временных диаграмм и посредством сочетания кластерного и регрессионного анализа. С помощью разра-ботанной геоинформационной системы (ГИС) и с использованием всемирного и байкальского регионального каталогов землетрясений решались задачи по выяснению параметров и механизмов пространственно-вре-менной миграции сейсмической активности. Сейсмомиграционные явления изучались в следующих гео- GEODYNAMICS & TECTONOPHYSICS P U B L I S H E D B Y T H E I N S T I T U T E O F T H E E A R T H ' S C R U S T S I B E R I A N B R A N C H O F R U S S I A N A C A D E M Y O F S C I E N C E S R e c e n t G e o d y n a m i c s 225E.A. Levina, V.V. Ruzhich: The seismicity migration study… структурных системах: в пределах Байкальской рифтовой зоны (БРЗ), между БРЗ и областью Индо-Евразий-ской межплитной коллизии, между ...
The mechanics of the ice cover of Lake Baikal has been studied through monitoring of its deformation and seismic effects and full-size uniaxial compression and shear tests in 2005–2007. We measured the shear strength of ice specimens and large in situ blocks (σ = 0.2−1.9 MPa) and investigated it as a function of air temperature and ice structure. Deformation was analyzed in terms of various natural controls, such as air temperature and pressure, wind, sub-ice currents, and local earthquakes. Precise strain measurements along ice cracks were used to explore the strain behavior of ice, including the cases of dynamic failure (ice shocks). Measurements by seismic station Baikal-12 were used to monitor diurnal background microseismicity variations and to record an ice quake with its magnitude (M = 0.3–0.8; E = 104–105 J) comparable to a medium-size rock burst or a small earthquake. Ice quakes were studied in terms of their nucleation, dynamics, and aftereffects, as well as the strain and seismic responses of the ice, using sub-ice explosions in the latter case. The natural conditions of deformation in the elastoviscoplastic Baikal ice are similar to lithospheric processes and thus can be employed in tectonophysical modeling with scientific and practical implications for hazard mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.