We report measurements of the temperature dependence of the critical current in Josephson junctions consisting of conventional superconducting banks of Nb and a weakly ferromagnetic interlayer of a Cu x Ni 1−x alloy, with x around 0.5. With decreasing temperature I c generally increases, but for specific thicknesses of the ferromagnetic interlayer, a maximum is found followed by a strong decrease down to zero, after which I c rises again. Such a sharp cusp can only be explained by assuming that the junction changes from a 0-phase state at high temperatures to a π-phase state at low temperatures.
We report the first experimental observation of the two-node thickness dependence of the critical current in Josephson junctions with a ferromagnetic interlayer. Nodes of the critical current correspond to the transitions into the pi state and back into the conventional 0 state. From the experimental data the superconducting order parameter oscillation period and the pair decay length in the ferromagnet are extracted reliably. We develop a theoretical approach based on the Usadel equations taking into account the spin-flip scattering. Results of numerical calculations are in good agreement with experiments.
The difference between the phases of superconducting order parameter plays in superconducting circuits the role similar to that played by the electrostatic potential difference required to drive a current in conventional circuits. This fundamental property can be altered by inserting in a superconducting circuit a particular type of weak link, the so-called Josephson π-junction having inverted current-phase relation and enabling a shift of the phase by π. We demonstrate the operation of three superconducting circuits -two of them are classical and one quantum -which all utilize such π-phase shifters realized using superconductor-ferromagnet-superconductor sandwich technology. The classical circuits are based on single-flux-quantum cells, which are shown to be scalable and compatible with conventional niobium-based superconducting electronics. The quantum circuit is a π-phase biased qubit, for which we observe coherent Rabi oscillations and compare the measured coherence time with that of conventional superconducting phase qubits. 1 arXiv:1005.1581v1 [cond-mat.supr-con]
We studied the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state established due to the proximity effect in superconducting Nb/Cu 41 Ni 59 bilayers. Using a special wedge-type deposition technique, series of 20-35 samples could be fabricated by magnetron sputtering during one run. The layer thickness of only a few nanometers, the composition of the alloy, and the quality of interfaces were controlled by Rutherford backscattering spectrometry, high resolution transmission electron microscopy, and Auger spectroscopy. The magnetic properties of the ferromagnetic alloy layer were characterized with superconducting quantum interference device (SQUID) magnetometry. These studies yield precise information about the thickness, and demonstrate the homogeneity of the alloy composition and magnetic properties along the sample series. The dependencies of the critical temperature on the Nb and Cu 41 Ni 59 layer thickness, T c (d S ) and T c (d F ), were investigated for constant thickness d F of the magnetic alloy layer and d S of the superconducting layer, respectively. All types of non-monotonic behaviors of T c versus d F predicted by the theory could be realized experimentally: from reentrant superconducting behavior with a broad extinction region to a slight suppression of superconductivity with a shallow minimum. Even a double extinction of superconductivity was observed, giving evidence for the multiple reentrant behavior predicted by theory. All critical temperature curves were fitted with suitable sets of parameters. Then, T c (d F ) diagrams of a hypothetical F/S/F spin-switch core structure were calculated using these parameters. Finally, superconducting spin-switch fabrication issues are discussed in detail in view of the achieved results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.