Ravikumar [1] followed 290 patients with displaced subcapital femur fractures for 13 years and reported that a higher rate of revision surgery was needed in those who underwent open reduction (as compared to those who had hemiarthroplasty or total hip arthroplasty), due to internal fixation nonunion and avascular necrosis. Similarly, in a study of 222 patients reported by Frihagen [2], hip hemiarthroplasty was associated with
The investigation results of the structure and wear resistance of composite chemical coatings on the nickel base obtained by means of mutual codeposition with nanodispersed particles of aluminum oxide and potassium polytitanate are presented. The investigations are carried out by scanning electron microscope. It is found, that composite nickel penetrates into the base metal to a depth of about 5 µm, forming diffusion layer, which provides an increased cohesive strength of the coating with base metal. Composite coating has abundance of inclusions of different size along the whole surface; which are absent in the base coating. Nanodispersed particles penetrate into the coating; accelerate the nickeling process, which provides the increase of the coating wear resistance.
Нанесение функциональных покрытий на металлические материалы (нержавеющая сталь 1H18N9, сплав титана Ti6Al4V) позволяет совмещать биосовместимость керамики с преимуществами металлов для усовершенствования трибологических характеристик протезов и создания недорогих инновационных прототипов с целью замещения дефектов у пациентов различных возрастных групп. Специфические свойства наноструктурных оксидных покрытий делают их наиболее перспективными для дальнейшего применения в имплантологии. Были исследованы высокие показатели твердости порядка 9 Gpa, адгезионной прочности порядка 40 N и низкий коэффициент трения с выраженной тенденцией к уменьшению в жидкостях порядка 0,07. Результаты коррозионных тестов демонстрируют улучшение на порядок сопротивления коррозии как для субстратов из нержавеющей стали, так и сплава титана. Поверхность с оксидными покрытиями демонстрирует электрическую инертность и емкостные свойства. Гидрофильность поверхности покрытий в сравнении с металлическими субстратами исследована методом тенсиометрии. Поверхности с наноструктурными оксидными покрытиями обладают улучшенной биосовместимостью благодаря диэлектрическим свойствам и высоким значениям поверхностной энергии.
The article presents the results of research on the establishment of an effective nanoscale phase and modes of applying nanocomposite electroplating coatings based on chromium. As a result of the conducted studies, it was found that it is advisable to use a nanodispersed aluminum oxide powder as a nanoscale phase. The method of mathematical planning of the experiment was used to determine the optimal modes of coating and the concentration of nanoscale particles in the electrolyte. The microhardness of the obtained coatings was chosen as an optimization parameter, since it significantly affects their wear resistance. The highest microhardness of a nanocomposite electrolytic coating based on chromium is achieved when the electrolyte is heated to a temperature of 50 °C, a current density of 59 A/dm2 and a concentration of nanoscale phase particles in the electrolyte of 3.2 g/l, which ultimately corresponds to an increase in microhardness to 14.32 GPa. It is also established that nanocomposition coatings have a positive microhardness gradient in thickness, which allows leveling the difference in the values of the microhardness of the coatings and the base metal and will help to increase the adhesion strength of the coatings to the base on the one hand and their wear resistance on the other. Based on the microhardness measurements of chromium-based nanocomposition coatings, statistical series were formed. 30 samples were subjected to measurements. According to the results of microhardness measurements, the average square deviation of the values of nanocomposition coatings based on chromium was 0.05 (coefficient of variation 0.283). To equalize the obtained experimental microhardness information, the law of normal distribution is chosen, since the coefficient of variation, according to which the greatest probability of microhardness values of nanocomposite coatings based on chromium is observed in the range of 14.32–14.37 GPa.
Предложена физико-математическая модель механизма упрочнения гальванических покрытий наноразмерными материалами. Установлено, что на механизм упрочнения наибольшее влияние оказывают структурные превращения, происходящие в нанокомпозиционных покрытиях. Исходя из физических процессов, происходящих в гальванических покрытиях при модификации их наноразмерными материалами, была обоснована и исследована физико-математическая модель механизма их упрочнения. Представленная модель позволяет прогнозировать степень упрочнения нанокомпозиционных покрытий в зависимости от используемых нанодисперсных материалов и расстояния между ними в покрытии. Рис. 4. Схема конструкции установки для ультразвуковой подготовки зерна к помолу
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.