This paper aims to optimize total energy costs in an operational model of a novel energy hub (EH) in a residential area. The optimization problem is set up based on daily load demand (such as electricity, heat, and cooling) and time-of-use (TOU) energy prices. The extended EH model considers the involvement of solar photovoltaic (PV) generation, solar heat exchanger (SHE), and a battery energy storage system (BESS). A mathematical model is constructed with the objective of optimizing total energy cost during the day, including some constraints such as input-output energy balance of the EH, electricity price, capacity limitation of the system, and charge/discharge power of BESS. Four operational cases based on different EH structures are compared to assess the effect of solar energy applications and BESS on the operational efficiency. The results show that the proposed model predicts significant changes to the characteristics of electricity and gas power bought from utilities, leading to reduced total energy cost compared to other cases. They also indicate that the model is appropriate for the characteristics of residential loads.
The structural and optimal operation of an Energy Hub (EH) has a tremendous influence on the hub's performance and reliability. This paper envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability. The generalized energy system structure is presented theoretically with all selective hub sub-modules, including electric heater (EHe) and solar sources block sub-modules. To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions) and is modeled mathematically in a General Algebraic Modeling System (GAMS), which indicates the optimal hub structure's corresponding elements with binary variables (0, 1). Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated. These case studies demonstrate the effectiveness of the suggested model and methodology. Finally, avenues for future research are also prospected.
This paper proposes a novel energy hub model for areas using both heat and cold demands that arise due to the major changes in environmental temperature in different periods of the year. The energy demand and the electrical price in a competitive electricity market are uncertain with stochastic values which are usually performed by a probability distribution function. Therefore, a stochastic mathematical model representing an optimal operation of energy hub is based on the objective function of minimization of energy costs (including electricity and gas). Several constraints such as energy balance, limited capacity of the transformer, air conditioners, gas boilers, absorption chillers, combined heat, and power and battery energy storage system are also incorporated into the model to guarantee the required specifications. The high-level algebraic modeling software, general algebraic modeling system has been employed to undertake calculations. Finally, numerical results have illustrated the efficiency and capability of the proposed models.
This study proposes an optimized model of a microenergy network (MEN) that includes electricity and natural gas with integrated solar, wind, and energy storage systems (ESSs). The proposed model is based on energy hubs (EHs) and it aims to minimize operation costs and greenhouse emissions. The research is motivated by the increasing use of renewable energies and ESSs for secure energy supply while reducing operation costs and environment effects. A general algebraic modeling system (GAMS) is used to solve the optimal operation problem in the MEN. The results demonstrate that an optimal MEN formed by multiple EHs can provide appropriate and flexible responses to fluctuations in electricity prices and adjustments between time periods and seasons. It also yields significant reductions in operation costs and emissions. The proposed model can contribute to future research by providing a more efficient network model (as compared with the traditional electricity supply system) to scale down the environmental and economic impacts of electricity storage and supply systems on MEN operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.