The aim of the work was to study the peculiarities of interaction of the surface of bacterial lectin of Bacillus subtilis IMB B-7724 inthe native state and under different model conditions with water molecules by 1 H NMR; to create a composite system based on the studied lectin, in which the protein molecule is minimally affected by the surface of the carrier, because protein molecules are capable to bind a significant amount of water localized in the spaces between the polymer chains. A method of “dry” immobilization of bacterial lectin on the surface of hydrophobic silica has been developed. Hydration of native lectin and lectin fixed on the surface of hydrophobic silica AM-1-175 was studied by low-temperature 1 H NMR spectroscopy. It has been shown that the immobilization of lectin on the surface of AM1 is accompanied by an increase in the interfacial energy gS from 4.1 to 5.2 J/g. This is due to an increase in the concentration of strongly bound water. Analysis of changes in the distributions of radii R of clusters of adsorbed water allows us to state that in water adsorbed by native lectin, there are two main maxima at R = 1 and 3 nm. In the immobilized state, the maximum at R = 1 nm is present in both types of water (of different order), but the second maximum is observed only for more ordered associates. Chloroform medium slightly reduces the binding energy of water to native lectin molecules (from 4.3 to 4.1 J/g), but in the case of immobilized lectin in CDCl3 medium, the value of ΣgS increases from 5.2 to 7.4 J/g. That is, the weakly polar medium promotes to increase in the interaction of water with interfaces, which is manifested in a relative increase in the number of water clusters of smaller size (Fig. 4). It should be noted that weakly associated forms of water (signal 3) are also represented by several types of clusters that have a radius in the range R = 1–10 nm, and their size distribution changes significantly during immobilization of lectin on the surface of AM1. Probably, weakly associated types of water are formed both in cavities, between polymer chains of protein molecules, and on the surface of AM1, free of protein.
Bone tumor diseases are one of the main problems in modern clinical practice. After surgery, some of the tumor cells capable of proliferation may remain, leading to tumor recurrence. In addition, surgical ablation of bone tumors creates bone tissue defects. Therefore, the problem of manufacturing specific biomaterials with a dual function of treating bone tumors and regeneration of bone defects has become a priority. The use of methods of targeted delivery and local controlled release of drugs contributes to the creation of the desired therapeutic concentration of drugs in the disease focus and increases their bioavailability. In recent years, promising samples capable of effective controlled release have been developed in which cisplatin, doxorubicin and gemcitabine have been used as model chemotherapeutic drugs. These approaches have been promising and have shown the potential to destroy residual tumor cells, however, they may become resistant to such drugs, which leads to treatment failure. The main purpose of the review is to summarize the latest world experience in the synthesis, research and use of composites based on bioactive ceramic materials and modern antitumor drugs as promising implants, embodying a new generation of complex remedies for targeted delivery with osteoconductive and antitumor properties, prolonged action, for local application. Examples are given of bioglass application with cytotoxic / cytostatic components, as well as results of development of the newest directions of antitumor therapy of bones, in which acquisition of resistance of tumor cells is not observed. The antitumor functions of such multifunctional samples are performed, for example, by chemotherapy, photothermal therapy, magnetic hyperthermia, and photodynamic therapy. These data are of scientific, practical and methodical interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.