Abstract:In the Chernorud granulite zone in the Olkhon region of West Pribaikalie, we studied gabbro-pyroxenites composing tectonic plates (Chernorud, Tonta) and synmetamorphic intrusive bodies (Ulan-Khargana), as well as numerous disintegrated boudins and inclusions embedded in the metamorphic matrix. Based on the results of comparative analysis of the chemical compositions, the gabbro-pyroxenites are classified into a single island-arc tholeiitic series. The COMAGMAT software was used to simulate this series and to estimate the initial composition of the parent magma (magnesian basalt: SiO2=46.0 wt. %, TiO2=0.8 wt. %, Al2O3=15.3 wt. %, ΣFeO=9.0 wt. %, MnO=0.15 wt. %, MgO=10.5 wt. %, CaO=17.0 wt. %, Na2O=1.0 wt. %, K2O=0.2 wt. %, P2O5=0.05 wt. %, total = 100.0 %, Mg# = 67.5 %). It is concluded that the granulite metamorphism (P=7.7 to 8.6 kbar, T=770 to 820 °C) was due not only to dipping of the initial sedimentary-volcanic series to a depth of 25-28 km, but also to the presence of a deep chamber of magnesian basalt magma. In our estimations, garnet-pyroxenites (i.e. mafic rocks of the top facies in the above-mentioned chamber) originated at P=8.0-8.3 kbar and T=900-930 °C. Considering petrology, the deep mafic chamber under the layer of granulite facies is evidenced by metamorphic magma mingling, as well as pipe-shaped intrusions characterized by the specific morphology, internal structure and bulk rock compositions. Based on the data on the Ulan-Khargana massif and gabbro-pyroxenite bodies involved in the structure of the marble melange, we propose a petrological model showing two stages of mafic injection -Stage 1: hydraulic fracturing of granulite series and the emergence of tubular structures and bodies, which are similar to kimberlite pipes or channels of different shapes; Stage 2: rising of the fluidized residual alkaline melt through the emerging 'pipes' and fractures armored by hardened zones, which is followed by metamorphic magma mingling under viscous deformation conditions. The mafic magmas intruding to the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.