The study of neonatal cry signals is always an interesting topic and still researcher works interminably to develop some module to predict the actual reason for the baby cry. It is really hard to predict the reason for their cry. The main focus of this paper is to develop a Dense Convolution Neural network (DCNN) to predict the cry. The target cry signal is categorized into five class based on their sound as “Eair”, “Eh”, “Neh”, “Heh” and “Owh”. Prediction of these signals helps in the detection of infant cry reason. The audio and speech features (AS Features) were exacted using Mel-Bark frequency cepstral coefficient from the spectrogram cry signal and fed into DCNN network. The systematic DCNN architecture is modelled with modified activation layer to classify the cry signal. The cry signal is collected in different growth phase of the infants and tested in proposed DCNN architecture. The performance of the system is calculated through parameters accuracy, specificity and sensitivity are calculated. The output of proposed system yielded a balanced accuracy of 92.31%. The highest accuracy level 95.31%, highest specificity level 94.58% and highest sensitivity level 93% attain through proposed technique. From this study, it is concluded that the proposed technique is more efficient in detecting cry signal compared to the existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.