With the rapid increasing popularity of the WWW, Websites are playing a crucial role to convey knowledge to the end users. Every request of Web site or a transaction on the server is stored in a file called server log file. Providing Web administrator with meaningful information about user access behavior (also called click stream data) has become a necessity to improve the quality of Web information and service performance. As such, the hidden knowledge obtained from mining, web server traffic data and user access patterns ( called Web Usage Mining), could be directly used for marketing and management of E-business, E-services, E-searching , E-education and so on.Categorizing visitors or users based on their interaction with a web site is a key problem in web usage mining. The click stream generated by various users often follows distinct patterns, clustering of the access pattern will provide the knowledge, which may help in recommender system of finding learning pattern of user in E-learning system , finding group of visitors with similar interest , providing customized content in site manager, categorizing customers in E-shopping etc.Given session information, this paper focuses a method to find session similarity by sequence alignment using dynamic programming, and proposes a model such as similarity matrix for representing session similarity measures. The work presented in this paper follows Agglomerative Hierarchical Clustering method to cluster the similarity matrix in order to group similar sessions and the clustering process is depicted in dendrogram diagram.
The energy is a major resource to obtain efficient data gathering and increasing network lifetime (NL). The various techniques are introduced for data aggregation, but energy optimized sensor node (SN) selection was not carried out to further enhance NL. In order to improve the energy efficient data gathering in WSN, a Fuzzy Gene Energy Optimized Reweight Boosting Classification (FGEORBC) Technique is introduced with lesser time consumption. In FGEORBC technique, the Residual Energy (RE) of SN in the WSN is computed. After calculating SN residual energy, fuzzy logic is applied to determine higher energy nodes and lower energy nodes using threshold value. For finding the optimal higher energy SNs, then Ranked Gaussian gene optimization technique is applied. If the node satisfies the fitness criterion, then the node is selected as an optimal higher energy SN. Otherwise, the rank selection, ring crossover, and Gaussian mutation process are carried out until the condition gets satisfied. After that, the sink node collects the data packets (DP) from the optimal higher energy SNs. In the sink node, Reweight Boosting Classification is carried out to classify the sensed DP and it sends to the base station (BS) for further processing. Simulation of FGEORBC technique is carried out using different parameters such as energy consumption (EC), NL, data gathering time and classification accuracy (CA) with respect to a number of SN and a number of DP. The results observed that FGEORBC technique improves the data gathering and NL with minimum time as well as EC than the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.