The genotype of infants at family risk of developing CD, carrying the HLA-DQ2 haplotypes, influences the early gut microbiota composition. This finding suggests that a specific disease-biased host genotype may also select for the first gut colonisers and could contribute to determining disease risk.
Interactions between environmental factors and predisposing genes could be involved in the development of coeliac disease (CD). This study has assessed whether milk-feeding type and HLA-genotype influence the intestinal microbiota composition of infants with a family history of CD. The study included 164 healthy newborns, with at least one first-degree relative with CD, classified according to their HLA-DQ genotype by PCR-SSP DQB1 and DQA1 typing. Faecal microbiota was analysed by quantitative PCR at 7 days, and at 1 and 4 months of age. Significant interactions between milk-feeding type and HLA-DQ genotype on bacterial numbers were not detected by applying a linear mixed-model analysis for repeated measures. In the whole population, breast-feeding promoted colonization of C. leptum group, B. longum and B. breve, while formula-feeding promoted that of Bacteroides fragilis group, C. coccoides-E. rectale group, E. coli and B. lactis. Moreover, increased numbers of B. fragilis group and Staphylococcus spp., and reduced numbers of Bifidobacterium spp. and B. longum were detected in infants with increased genetic risk of developing CD. Analyses within subgroups of either breast-fed or formula-fed infants indicated that in both cases increased risk of CD was associated with lower numbers of B. longum and/or Bifidobacterium spp. In addition, in breast-fed infants the increased genetic risk of developing CD was associated with increased C. leptum group numbers, while in formula-fed infants it was associated with increased Staphylococcus and B. fragilis group numbers. Overall, milk-feeding type in conjunction with HLA-DQ genotype play a role in establishing infants' gut microbiota; moreover, breast-feeding reduced the genotype-related differences in microbiota composition, which could partly explain the protective role attributed to breast milk in this disorder.
Interactions between the immune system and the intestinal microbiota may play a role in coeliac disease (CD). In the present study, the potential effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed CD were evaluated. A double-blind, randomised, placebo-controlled trial was conducted in thirty-three children who received a capsule containing either B. longum CECT 7347 (10 9 colonyforming units) or placebo (excipients) daily for 3 months together with a gluten-free diet (GFD). Outcome measures (baseline and postintervention) included immune phenotype of peripheral blood cells, serum cytokine concentration, faecal secretory IgA (sIgA) content, anthropometric parameters and intestinal microbiota composition. Comparisons between the groups revealed greater height percentile increases (P¼0·048) in the B. longum CECT 7347 group than in the placebo group, as well as decreased peripheral CD3 þ T lymphocytes (P¼0·004) and slightly reduced TNF-a concentration (P¼0·067). Within-group comparisons of baseline and final values did not reveal any differences in T lymphocytes and cytokines in the placebo group, while decreased CD3 þ (P ¼ 0·013) and human leucocyte antigen (HLA)-DR þ T lymphocytes (P ¼ 0·029) and slightly reduced TNF-a concentration (P¼ 0·085) were detected in the B. longum CECT 7347 group.Comparison between the groups showed that the administration of B. longum CECT 7347 reduced the numbers of the Bacteroides fragilis group (P¼0·020) and the content of sIgA in stools (P¼ 0·011) compared with the administration of placebo. Although this is a first exploratory intervention with limitations, the findings suggest that B. longum CECT 7347 could help improve the health status of CD patients who tend to show alterations in gut microbiota composition and a biased immune response even on a GFD.
Celiac disease (CD) is an immune-mediated enteropathy involving genetic and environmental factors whose interaction might influence disease risk. The aim of this study was to determine the effects of milk-feeding practices and the HLA-DQ genotype on intestinal colonization of Bacteroides species in infants at risk of CD development. This study included 75 full-term newborns with at least one first-degree relative suffering from CD. Infants were classified according to milk-feeding practice (breast-feeding or formula feeding) and HLA-DQ genotype (high or low genetic risk). Stools were analyzed at 7 days, 1 month, and 4 months by PCR and denaturing gradient gel electrophoresis (DGGE). The Bacteroides species diversity index was higher in formula-fed infants than in breast-fed infants. Breast-fed infants showed a higher prevalence of Bacteroides uniformis at 1 and 4 months of age, while formula-fed infants had a higher prevalence of B. intestinalis at all sampling times, of B. caccae at 7 days and 4 months, and of B. plebeius at 4 months. Infants with high genetic risk showed a higher prevalence of B. vulgatus, while those with low genetic risk showed a higher prevalence of B. ovatus, B. plebeius, and B. uniformis. Among breast-fed infants, the prevalence of B. uniformis was higher in those with low genetic risk than in those with high genetic risk. Among formula-fed infants, the prevalence of B. ovatus and B. plebeius was increased in those with low genetic risk, while the prevalence of B. vulgatus was higher in those with high genetic risk. The results indicate that both the type of milk feeding and the HLA-DQ genotype influence the colonization process of Bacteroides species, and possibly the disease risk.
Celiac disease (CD) is an immune-mediated enteropathy involving genetic and environmental factors, whose interaction influences disease risk. The intestinal microbiota, including viruses and bacteria, could play a role in the pathological process leading to gluten intolerance. In this study, we investigated the prevalence of pathogens in the intestinal microbiota of infants at familial risk of developing CD. We included 127 full-term newborns with at least one first-degree relative with CD. Infants were classified according to milk-feeding practice (breastfeeding or formula feeding) and HLA-DQ genotype (low, intermediate or high genetic risk). The prevalence of pathogenic bacteria and viruses was assessed in the faeces of the infants at 7 days, 1 month and 4 months of age. The prevalence of Clostridium perfringens was higher in formula-fed infants than in breast-fed over the study period, and that of C. difficile at 4 months. Among breastfed infants, a higher prevalence of enterotoxigenic E. coli (ETEC) was found in infants with the highest genetic risk compared either to those with a low or intermediate risk. Among formula-fed infants, a higher prevalence of ETEC was also found in infants with a high genetic risk compared to those of intermediate risk. Our results show that specific factors, such as formula feeding and the HLA-DQ2 genotype, previously linked to a higher risk of developing CD, influence the presence of pathogenic bacteria differently in the intestinal microbiota in early life. Further studies are warranted to establish whether these associations are related to CD onset later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.