With the ease of access to information, and its rapid dissemination over the internet (both velocity and volume), it has become challenging to filter out truthful information from fake ones. The research community is now faced with the task of automatic detection of fake news, which carries real-world socio-political impact. One such research contribution came in the form of the Constraint@AAA12021 Shared Task on COVID19 Fake News Detection in English. In this paper, we shed light on a novel method we proposed as a part of this shared task. Our team introduced an approach to combine topical distributions from Latent Dirichlet Allocation (LDA) with contextualized representations from XLNet. We also compared our method with existing baselines to show that XLNet + Topic Distributions outperforms other approaches by attaining an F1-score of 0.967.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.