There has been significant growth in the wireless market where new applications are accompanied with strict design goals such as low cost, low power dissipation and small form factor. Large capacity and range for new applications are the driving force for development of new standard such as third generation mobile system (3G). Recent research results show that the development that was not possible with current IC technology is made possible with MicroElectroMechanical Systems (MEMS) technology. Significant amount of research is taking place to replace the off-chip components with on-chip components to design a high performance receiver front end. The passive components such as switches, capacitors and inductors are integral part of RF front end. High quality (Q) inductors are used to design RF front-end components such as voltage-controlled oscillator (VCO) and low noise amplifier (LNA). However, they are the bottleneck in achieving the on-chip optimum components, because of Q factor dependence on parasitic effects, limiting the performance. In recent research publications different on-chip inductor structures such as coil, polygon, rectangular and stacked configurations have been suggested and used to implement high value of inductance. In this paper design and implementation issues of MEMS inductor are presented. The paper is divided in two sections, the first section presents the role of MEMS based passive components and second section presents design issues, implementation and analysis of different MEMS based inductors.
This paper presents a tunable CMOS voltage controlled oscillator (VCO) used to generate 1.8GHz, 3.6GHz and 4.2GHz frequencies for multistandard mobile receiver. The switch architecture is used to combine three VCO's to get a better phase noise performance tunable VCO. The architecture is able to select the operating frequency based on a control signal. The VCO's are independently designed with the view of switch architecture combination, so the phase noise performance of this architecture is well below the specification of GSM and WCDMA standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.