A dynamically changing road traffic model which occasionally suffers a disaster (traffic collision, wrecked vehicles, conflicting weather conditions, spilled cargo, and hazardous matter) resulting in loss of all the vehicles (diverted to other routes) has been discussed. Once the system gets repaired, it undergoesn-1trial phases and finally reaches its full capacity phasen. We have obtained the explicit steady state probabilities of the system via Matrix Geometric Method. Probability Generating Function is used to evaluate the time spent by the system in each phase. Various performance measures like mean traffic, average waiting time of vehicles, and fraction of vehicles lost are calculated. Some special cases have also been discussed.
In this research work we are concerned with single unit server queue queue with Markov Modulated process in Poisson fashion and the service time follow exponential distribution. The system is framed as a state dependent with the arrival process as Markov Modulated input and service is rendered by a single server with variation in service rate based on the intensity of service state of the system. The rate matrix that is essential to compute the stationary probability vector is obtained and various performance measures are computed using matrix method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.