Rare earth elements (REEs) are among the common minerals in the Rare earth environment that are very precious and also enhance soil properties. The aim of this present study is to evaluate the accumulation of REEs by bacterial isolates of rare earth environment. Morphological and biochemical characterization were done for 37 bacterial isolates and also molecular studies were carried out using 16S rRNA sequencing method. The assessment of REEs composition in soil samples of Chavara and Manavalakurichi analyzed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) showed the abundance of Cerium and Neodymium among lanthanides. The bioaccumulation study of rare earth elements by Bacillus cereus were accomplished employing FT-IR spectrum and ICP-OES analysis. The significant accumulation of rare earth elements especially Cerium and Neodymium was noticed in Bacillus cereus isolated from rare earth environment.
COVID-19 lockdown has given us an opportunity to investigate the pollutant concentrations in response to the restricted anthropogenic activities. The atmospheric concentration levels of nitrogen dioxide (NO
2
), carbon monoxide (CO) and ozone (O
3
) have been analysed for the periods during the first wave of COVID-19 lockdown in 2020 (25th March–31st May 2020) and during the partial lockdowns due to second wave in 2021 (25th March–15th June 2021) across India. The trace gas measurements from Ozone Monitoring Instrument (OMI) and Atmosphere InfraRed Sounder (AIRS) satellites have been used. An overall decrease in the concentration of O
3
(5–10%) and NO
2
(20–40%) have been observed during the 2020 lockdown when compared with business as usual (BAU) period in 2019, 2018 and 2017. However, the CO concentration increased up to 10–25% especially in the central-west region. O
3
and NO
2
slightly increased or had no change in 2021 lockdown when compared with the BAU period, but CO showed a mixed variation prominently influenced by the biomass burning/forest fire activities. The changes in trace gas levels during 2020 lockdown have been predominantly due to the reduction in the anthropogenic activities, whereas in 2021, the changes have been mostly due to natural factors like meteorology and long-range transport, as the emission levels have been similar to that of BAU. Later phases of 2021 lockdown saw the dominant effect of rainfall events resulting in washout of pollutants. This study reveals that partial or local lockdowns have very less impact on reducing pollution levels on a regional scale as natural factors like atmospheric long-range transport and meteorology play deciding roles on their concentration levels.
Supplementary Information
The online version contains supplementary material available at 10.1007/s10661-023-11318-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.